Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 4(3): 325-336, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29144724

RESUMEN

Acinetobacter baumannii is a multidrug resistant pathogen that infects more than 12 000 patients each year in the US. Much of the resistance to ß-lactam antibiotics in Acinetobacter spp. is mediated by class C ß-lactamases known as Acinetobacter-derived cephalosporinases (ADCs). ADCs are unaffected by clinically used ß-lactam-based ß-lactamase inhibitors. In this study, five boronic acid transition state analog inhibitors (BATSIs) were evaluated for inhibition of the class C cephalosporinase ADC-7. Our goal was to explore the properties of BATSIs designed to probe the R1 binding site. Ki values ranged from low micromolar to subnanomolar, and circular dichroism (CD) demonstrated that each inhibitor stabilizes the ß-lactamase-inhibitor complexes. Additionally, X-ray crystal structures of ADC-7 in complex with five inhibitors were determined (resolutions from 1.80 to 2.09 Å). In the ADC-7/CR192 complex, the BATSI with the lowest Ki (0.45 nM) and greatest Δ Tm (+9 °C), a trifluoromethyl substituent, interacts with Arg340. Arg340 is unique to ADCs and may play an important role in the inhibition of ADC-7. The ADC-7/BATSI complexes determined in this study shed light into the unique recognition sites in ADC enzymes and also offer insight into further structure-based optimization of these inhibitors.


Asunto(s)
Acinetobacter/enzimología , Ácidos Borónicos/química , Ácidos Borónicos/farmacología , Cefalosporinasa/química , Cefalosporinasa/metabolismo , Inhibidores de beta-Lactamasas/química , Inhibidores de beta-Lactamasas/farmacología , Sitios de Unión , Dicroismo Circular , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Conformación Proteica
2.
ACS Infect Dis ; 4(3): 337-348, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29144725

RESUMEN

Boronic acids are attracting a lot of attention as ß-lactamase inhibitors, and in particular, compound S02030 ( Ki = 44 nM) proved to be a good lead compound against ADC-7 ( Acinetobacter-derived cephalosporinase), one of the most significant resistance determinants in A. baumannii. The atomic structure of the ADC-7/S02030 complex highlighted the importance of critical structural determinants for recognition of the boronic acids. Herein, to elucidate the role in recognition of the R2-carboxylate, which mimics the C3/C4 found in ß-lactams, we designed, synthesized, and characterized six derivatives of S02030 (3a). Out of the six compounds, the best inhibitors proved to be those with an explicit negative charge (compounds 3a-c, 3h, and 3j, Ki = 44-115 nM), which is in contrast to the derivatives where the negative charge is omitted, such as the amide derivative 3d ( Ki = 224 nM) and the hydroxyamide derivative 3e ( Ki = 155 nM). To develop a structural characterization of inhibitor binding in the active site, the X-ray crystal structures of ADC-7 in a complex with compounds 3c, SM23, and EC04 were determined. All three compounds share the same structural features as in S02030 but only differ in the carboxy-R2 side chain, thereby providing the opportunity of exploring the distinct binding mode of the negatively charged R2 side chain. This cephalosporinase demonstrates a high degree of versatility in recognition, employing different residues to directly interact with the carboxylate, thus suggesting the existence of a "carboxylate binding region" rather than a binding site in ADC enzymes. Furthermore, this class of compounds was tested against resistant clinical strains of A. baumannii and are effective at inhibiting bacterial growth in conjunction with a ß-lactam antibiotic.


Asunto(s)
Acinetobacter/enzimología , Ácidos Borónicos/química , Ácidos Borónicos/farmacología , Cefalosporinasa/química , Cefalosporinasa/metabolismo , Inhibidores de beta-Lactamasas/química , Inhibidores de beta-Lactamasas/farmacología , Sitios de Unión , Ácidos Borónicos/síntesis química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Unión Proteica , Conformación Proteica , Inhibidores de beta-Lactamasas/síntesis química
3.
Antimicrob Agents Chemother ; 60(3): 1760-6, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26729491

RESUMEN

Resistance to expanded-spectrum cephalosporins and carbapenems has rendered certain strains of Klebsiella pneumoniae the most problematic pathogens infecting patients in the hospital and community. This broad-spectrum resistance to ß-lactamases emerges in part via the expression of KPC-2 and SHV-1 ß-lactamases and variants thereof. KPC-2 carbapenemase is particularly worrisome, as the genetic determinant encoding this ß-lactamase is rapidly spread via plasmids. Moreover, KPC-2, a class A enzyme, is difficult to inhibit with mechanism-based inactivators (e.g., clavulanate). In order to develop new ß-lactamase inhibitors (BLIs) to add to the limited available armamentarium that can inhibit KPC-2, we have structurally probed the boronic acid transition state analog S02030 for its inhibition of KPC-2 and SHV-1. S02030 contains a boronic acid, a thiophene, and a carboxyl triazole moiety. We present here the 1.54- and 1.87-Å resolution crystal structures of S02030 bound to SHV-1 and KPC-2 ß-lactamases, respectively, as well as a comparative analysis of the S02030 binding modes, including a previously determined S02030 class C ADC-7 ß-lactamase complex. S02030 is able to inhibit vastly different serine ß-lactamases by interacting with the conserved features of these active sites, which includes (i) forming the bond with catalytic serine via the boron atom, (ii) positioning one of the boronic acid oxygens in the oxyanion hole, and (iii) utilizing its amide moiety to make conserved interactions across the width of the active site. In addition, S02030 is able to overcome more distantly located structural differences between the ß-lactamases. This unique feature is achieved by repositioning the more polar carboxyl-triazole moiety, generated by click chemistry, to create polar interactions as well as reorient the more hydrophobic thiophene moiety. The former is aided by the unusual polar nature of the triazole ring, allowing it to potentially form a unique C-H…O 2.9-Å hydrogen bond with S130 in KPC-2.


Asunto(s)
Ácidos Borónicos/química , Klebsiella pneumoniae/enzimología , Triazoles/química , Inhibidores de beta-Lactamasas/metabolismo , beta-Lactamasas/química , Ácidos Borónicos/metabolismo , Carbapenémicos/metabolismo , Dominio Catalítico/efectos de los fármacos , Cefalosporinas/metabolismo , Cristalografía por Rayos X , Klebsiella pneumoniae/efectos de los fármacos , Estructura Terciaria de Proteína , Tiofenos/química , Triazoles/metabolismo , beta-Lactamasas/metabolismo
4.
Antimicrob Agents Chemother ; 60(3): 1751-9, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26729496

RESUMEN

Boronic acid transition state inhibitors (BATSIs) are competitive, reversible ß-lactamase inhibitors (BLIs). In this study, a series of BATSIs with selectively modified regions (R1, R2, and amide group) were strategically designed and tested against representative class A ß-lactamases of Klebsiella pneumoniae, KPC-2 and SHV-1. Firstly, the R1 group of compounds 1a to 1c and 2a to 2e mimicked the side chain of cephalothin, whereas for compounds 3a to 3c, 4a, and 4b, the thiophene ring was replaced by a phenyl, typical of benzylpenicillin. Secondly, variations in the R2 groups which included substituted aryl side chains (compounds 1a, 1b, 1c, 3a, 3b, and 3c) and triazole groups (compounds 2a to 2e) were chosen to mimic the thiazolidine and dihydrothiazine ring of penicillins and cephalosporins, respectively. Thirdly, the amide backbone of the BATSI, which corresponds to the amide at C-6 or C-7 of ß-lactams, was also changed to the following bioisosteric groups: urea (compound 3b), thiourea (compound 3c), and sulfonamide (compounds 4a and 4b). Among the compounds that inhibited KPC-2 and SHV-1 ß-lactamases, nine possessed 50% inhibitory concentrations (IC50s) of ≤ 600 nM. The most active compounds contained the thiopheneacetyl group at R1 and for the chiral BATSIs, a carboxy- or hydroxy-substituted aryl group at R2. The most active sulfonamido derivative, compound 4b, lacked an R2 group. Compound 2b (S02030) was the most active, with acylation rates (k2/K) of 1.2 ± 0.2 × 10(4) M(-1) s(-1) for KPC-2 and 4.7 ± 0.6 × 10(3) M(-1) s(-1) for SHV-1, and demonstrated antimicrobial activity against Escherichia coli DH10B carrying blaSHV variants and blaKPC-2 or blaKPC-3 and against clinical strains of Klebsiella pneumoniae and E. coli producing different class A ß-lactamase genes. At most, MICs decreased from 16 to 0.5 mg/liter.


Asunto(s)
Ácidos Borónicos/farmacología , Escherichia coli/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Triazoles/farmacología , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/efectos de los fármacos , Ácidos Borónicos/química , Ceftazidima/química , Cefalotina/química , Escherichia coli/genética , Escherichia coli/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Pruebas de Sensibilidad Microbiana , Penicilinas/química , Relación Estructura-Actividad
5.
Gut ; 65(2): 278-85, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25588406

RESUMEN

OBJECTIVE: Colorectal cancers (CRCs) are frequently colonised by colibactin toxin-producing Escherichia coli bacteria that induce DNA damage in host cells and exhibit protumoural activities. Our objective was to identify small molecules inhibiting the toxic effects induced by these colibactin-producing bacteria. DESIGN: A structural approach was adopted for the identification of a putative ligand for the ClbP enzyme involved in the synthesis of colibactin. Intestinal epithelial cells and a CRC mouse model were used to assess the activity of the selected compounds in vitro and in vivo. RESULTS: Docking experiments identified two boron-based compounds with computed ligand efficiency values (-0.8 and -0.9 kcal/mol/atom) consistent with data expected for medicinal chemistry leads. The crystalline structure of ClbP in complex with the compounds confirmed that the compounds were binding to the active site of ClbP. The two compounds (2 mM) suppressed the genotoxic activity of colibactin-producing E coli both in vitro and in vivo. The mean degree of suppression of DNA damage for the most efficient compound was 98±2% (95% CI). This compound also prevented cell proliferation and colibactin-producing E coli-induced tumourigenesis in mice. In a CRC murine model colonised by colibactin-producing E coli, the number of tumours decreased by 3.5-fold in animals receiving the compound in drinking water (p<0.01). CONCLUSIONS: These results demonstrate that targeting colibactin production controls the genotoxic and protumoural effects induced by this toxin.


Asunto(s)
Ácidos Borónicos/farmacología , Neoplasias Colorrectales/prevención & control , Escherichia coli/efectos de los fármacos , Péptidos/metabolismo , Policétidos/metabolismo , Animales , Proteínas de Unión al Calcio/farmacología , Neoplasias Colorrectales/microbiología , Daño del ADN/fisiología , Escherichia coli/metabolismo , Ligandos , Ratones , Ratones Endogámicos BALB C , Mutágenos
6.
European J Org Chem ; 2015(5): 1075-1083, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26257579

RESUMEN

Stereoselective synthesis of previously unreported 1,2,3-triazol-1-yl-methaneboronic acids has been achieved from azidomethaneboronates by Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC). The proximity of the cycloaddition reaction center to the boronic group is not detrimental for the stability of the sp3-carbon-boron bond nor to the stereoisomeric composition, further expanding the field of application of click chemistry to new boronate substrates and offering a new potential scaffold for protease inhibitors.

7.
J Med Chem ; 58(14): 5445-58, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26102369

RESUMEN

Boronic acid transition-state inhibitors (BATSIs) represent one of the most promising classes of ß-lactamase inhibitors. Here we describe a new class of BATSIs, namely, 1-amido-2-triazolylethaneboronic acids, which were synthesized by combining the asymmetric homologation of boronates with copper-catalyzed azide-alkyne cycloaddition for the stereoselective insertion of the amido group and the regioselective formation of the 1,4-disubstituted triazole, respectively. This synthetic pathway, which avoids intermediate purifications, proved to be flexible and efficient, affording in good yields a panel of 14 BATSIs bearing three different R1 amide side chains (acetamido, benzylamido, and 2-thienylacetamido) and several R substituents on the triazole. This small library was tested against two clinically relevant class C ß-lactamases from Enterobacter spp. and Pseudomonas aeruginosa. The K(i) value of the best compound (13a) was as low as 4 nM with significant reduction of bacterial resistance to the combination of cefotaxime/13a.


Asunto(s)
Ácidos Borónicos/química , Ácidos Borónicos/farmacología , Química Clic , Diseño de Fármacos , Inhibidores de beta-Lactamasas/química , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , Escherichia coli/efectos de los fármacos , Concentración 50 Inhibidora , Modelos Moleculares , Conformación Proteica , Termodinámica , Triazoles/química , beta-Lactamasas/química
8.
ACS Infect Dis ; 1(6): 234-42, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-27622739

RESUMEN

BlaC, the single chromosomally encoded ß-lactamase of Mycobacterium tuberculosis, has been identified as a promising target for novel therapies that rely upon ß-lactamase inhibition. Boronic acid transition-state inhibitors (BATSIs) are a class of ß-lactamase inhibitors which permit rational inhibitor design by combinations of various R1 and R2 side chains. To explore the structural determinants of effective inhibition, we screened a panel of 25 BATSIs to explore key structure-function relationships. We identified a cefoperazone analogue, EC19, which displayed slow, time-dependent inhibition against BlaC with a potency similar to that of clavulanate (Ki* of 0.65 ± 0.05 µM). To further characterize the molecular basis of inhibition, we solved the crystallographic structure of the EC19-BlaC(N172A) complex and expanded our analysis to variant enzymes. The results of this structure-function analysis encourage the design of a novel class of ß-lactamase inhibitors, BATSIs, to be used against Mycobacterium tuberculosis.

9.
Biochemistry ; 53(48): 7670-9, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25380506

RESUMEN

ß-Lactam resistance in Acinetobacter baumannii presents one of the greatest challenges to contemporary antimicrobial chemotherapy. Much of this resistance to cephalosporins derives from the expression of the class C ß-lactamase enzymes, known as Acinetobacter-derived cephalosporinases (ADCs). Currently, ß-lactamase inhibitors are structurally similar to ß-lactam substrates and are not effective inactivators of this class C cephalosporinase. Herein, two boronic acid transition state inhibitors (BATSIs S02030 and SM23) that are chemically distinct from ß-lactams were designed and tested for inhibition of ADC enzymes. BATSIs SM23 and S02030 bind with high affinity to ADC-7, a chromosomal cephalosporinase from Acinetobacter baumannii (Ki = 21.1 ± 1.9 nM and 44.5 ± 2.2 nM, respectively). The X-ray crystal structures of ADC-7 were determined in both the apo form (1.73 Å resolution) and in complex with S02030 (2.0 Å resolution). In the complex, S02030 makes several canonical interactions: the O1 oxygen of S02030 is bound in the oxyanion hole, and the R1 amide group makes key interactions with conserved residues Asn152 and Gln120. In addition, the carboxylate group of the inhibitor is meant to mimic the C3/C4 carboxylate found in ß-lactams. The C3/C4 carboxylate recognition site in class C enzymes is comprised of Asn346 and Arg349 (AmpC numbering), and these residues are conserved in ADC-7. Interestingly, in the ADC-7/S02030 complex, the inhibitor carboxylate group is observed to interact with Arg340, a residue that distinguishes ADC-7 from the related class C enzyme AmpC. A thermodynamic analysis suggests that ΔH driven compounds may be optimized to generate new lead agents. The ADC-7/BATSI complex provides insight into recognition of non-ß-lactam inhibitors by ADC enzymes and offers a starting point for the structure-based optimization of this class of novel ß-lactamase inhibitors against a key resistance target.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Cefalosporinasa/química , Inhibidores de beta-Lactamasas/química , Inhibidores de beta-Lactamasas/farmacología , Acinetobacter baumannii/genética , Proteínas Bacterianas/genética , Fenómenos Biofísicos , Ácidos Borónicos/química , Ácidos Borónicos/farmacología , Dominio Catalítico , Cefalosporinasa/genética , Cristalografía por Rayos X , Diseño de Fármacos , Cinética , Modelos Moleculares , Estructura Molecular , Electricidad Estática , Termodinámica , Resistencia betalactámica/genética
10.
J Med Chem ; 56(3): 1084-97, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23252553

RESUMEN

Inhibitor resistant (IR) class A ß-lactamases pose a significant threat to many current antibiotic combinations. The K234R substitution in the SHV ß-lactamase, from Klebsiella pneumoniae , results in resistance to ampicillin/clavulanate. After site-saturation mutagenesis of Lys-234 in SHV, microbiological and biochemical characterization of the resulting ß-lactamases revealed that only -Arg conferred resistance to ampicillin/clavulanate. X-ray crystallography revealed two conformations of Arg-234 and Ser-130 in SHV K234R. The movement of Ser-130 is the principal cause of the observed clavulanate resistance. A panel of boronic acid inhibitors was designed and tested against SHV-1 and SHV K234R. A chiral ampicillin analogue was discovered to have a 2.4 ± 0.2 nM K(i) for SHV K234R; the chiral ampicillin analogue formed a more complex hydrogen-bonding network in SHV K234R vs SHV-1. Consideration of the spatial position of Ser-130 and Lys-234 and this hydrogen-bonding network will be important in the design of novel antibiotics targeting IR ß-lactamases.


Asunto(s)
Ácido Clavulánico/farmacología , Compuestos de Sulfhidrilo/farmacología , Inhibidores de beta-Lactamasas , Ácidos Borónicos/química , Ácidos Borónicos/farmacología , Dicroismo Circular , Cristalografía por Rayos X , Diseño de Fármacos , Cinética , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis , Estructura Secundaria de Proteína , Espectrometría de Masa por Ionización de Electrospray , beta-Lactamasas/química
11.
Proc Natl Acad Sci U S A ; 109(43): 17448-53, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23043117

RESUMEN

Fragment-based design was used to guide derivatization of a lead series of ß-lactamase inhibitors that had heretofore resisted optimization for in vivo activity. X-ray structures of fragments overlaid with the lead suggested new, unanticipated functionality and points of attachment. Synthesis of three derivatives improved affinity over 20-fold and improved efficacy in cell culture. Crystal structures were consistent with the fragment-based design, enabling further optimization to a K(i) of 50 pM, a 500-fold improvement that required the synthesis of only six derivatives. One of these, compound 5, was tested in mice. Whereas cefotaxime alone failed to cure mice infected with ß-lactamase-expressing Escherichia coli, 65% were cleared of infection when treated with a cefotaxime:5 combination. Fragment complexes offer a path around design hurdles, even for advanced molecules; the series described here may provide leads to overcome ß-lactamase-based resistance, a key clinical challenge.


Asunto(s)
Antibacterianos/química , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores de beta-Lactamasas , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Difracción de Rayos X
12.
J Med Chem ; 53(21): 7852-63, 2010 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-20945905

RESUMEN

We investigated a series of sulfonamide boronic acids that resulted from the merging of two unrelated AmpC ß-lactamase inhibitor series. The new boronic acids differed in the replacement of the canonical carboxamide, found in all penicillin and cephalosporin antibiotics, with a sulfonamide. Surprisingly, these sulfonamides had a highly distinct structure-activity relationship from the previously explored carboxamides, high ligand efficiencies (up to 0.91), and K(i) values down to 25 nM and up to 23 times better for smaller analogues. Conversely, K(i) values were 10-20 times worse for larger molecules than in the carboxamide congener series. X-ray crystal structures (1.6-1.8 Å) of AmpC with three of the new sulfonamides suggest that this altered structure-activity relationship results from the different geometry and polarity of the sulfonamide versus the carboxamide. The most potent inhibitor reversed ß-lactamase-mediated resistance to third generation cephalosporins, lowering their minimum inhibitory concentrations up to 32-fold in cell culture.


Asunto(s)
Antibacterianos/síntesis química , Ácidos Borónicos/síntesis química , Sulfonamidas/síntesis química , Inhibidores de beta-Lactamasas , Antibacterianos/química , Antibacterianos/farmacología , Ácidos Borónicos/química , Ácidos Borónicos/farmacología , Cristalografía por Rayos X , Pruebas Antimicrobianas de Difusión por Disco , Farmacorresistencia Bacteriana , Modelos Moleculares , Estructura Molecular , Unión Proteica , Estereoisomerismo , Relación Estructura-Actividad , Sulfonamidas/química , Sulfonamidas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA