Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Matrix Biol Plus ; 19-20: 100135, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38076279

RESUMEN

Cardiac fibrosis is a central pathological feature in several cardiac diseases, but the underlying molecular players are insufficiently understood. The extracellular matrix proteoglycan versican is elevated in heart failure and suggested to be a target for treatment. However, the temporal expression and spatial distribution of versican and the versican cleavage fragment containing the neoepitope DPEAAE in cardiac fibrosis remains to be elucidated. In this study, we have examined versican during cardiac fibrosis development in a murine pressure overload model and in patients with cardiomyopathies. We found that versican, mainly the V1 isoform, was expressed immediately after induction of pressure overload, preceding collagen accumulation, and versican protein levels extended from the perivascular region into the cardiac interstitium. In addition, we found increased production of versican by collagen expressing fibroblasts, and that it was deposited extensively in the fibrotic extracellular matrix during pressure overload. In cardiac cell cultures, the expression of versican was induced by the pro-fibrotic transforming growth factor beta and mechanical stretch. Furthermore, we observed that the proteolytic cleavage of versican (DPEAAE fragment) increased in the late phase of fibrosis development during pressure overload. In patients with hypertrophic and dilated cardiomyopathies, we found elevated levels of versican and a positive correlation between versican and collagen mRNA in the heart, as well as increased cleavage of full-length protein. Taken together, the temporal expression profile and the spatial distribution of both the full-length versican and the DPEAAE fragment observed in this study indicates a role for versican in development of cardiac fibrosis.

2.
Cardiovasc Res ; 119(10): 1915-1927, 2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37216909

RESUMEN

AIMS: Heart failure is a condition with high mortality rates, and there is a lack of therapies that directly target maladaptive changes in the extracellular matrix (ECM), such as fibrosis. We investigated whether the ECM enzyme known as A disintegrin and metalloprotease with thrombospondin motif (ADAMTS) 4 might serve as a therapeutic target in treatment of heart failure and cardiac fibrosis. METHODS AND RESULTS: The effects of pharmacological ADAMTS4 inhibition on cardiac function and fibrosis were examined in rats exposed to cardiac pressure overload. Disease mechanisms affected by the treatment were identified based on changes in the myocardial transcriptome. Following aortic banding, rats receiving an ADAMTS inhibitor, with high inhibitory capacity for ADAMTS4, showed substantially better cardiac function than vehicle-treated rats, including ∼30% reduction in E/e' and left atrial diameter, indicating an improvement in diastolic function. ADAMTS inhibition also resulted in a marked reduction in myocardial collagen content and a down-regulation of transforming growth factor (TGF)-ß target genes. The mechanism for the beneficial effects of ADAMTS inhibition was further studied in cultured human cardiac fibroblasts producing mature ECM. ADAMTS4 caused a 50% increase in the TGF-ß levels in the medium. Simultaneously, ADAMTS4 elicited a not previously known cleavage of TGF-ß-binding proteins, i.e. latent-binding protein of TGF-ß and extra domain A-fibronectin. These effects were abolished by the ADAMTS inhibitor. In failing human hearts, we observed a marked increase in ADAMTS4 expression and cleavage activity. CONCLUSION: Inhibition of ADAMTS4 improves cardiac function and reduces collagen accumulation in rats with cardiac pressure overload, possibly through a not previously known cleavage of molecules that control TGF-ß availability. Targeting ADAMTS4 may serve as a novel strategy in heart failure treatment, in particular, in heart failure with fibrosis and diastolic dysfunction.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Ratas , Humanos , Animales , Desintegrinas/metabolismo , Desintegrinas/farmacología , Miocardio/metabolismo , Insuficiencia Cardíaca/metabolismo , Cardiomiopatías/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Trombospondinas/metabolismo , Metaloproteasas/metabolismo , Metaloproteasas/farmacología , Fibrosis
3.
Am J Physiol Heart Circ Physiol ; 322(6): H1057-H1071, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35522553

RESUMEN

Pathological myocardial hypertrophy in response to an increase in left ventricular (LV) afterload may ultimately lead to heart failure. Cell surface receptors bridge the interface between the cell and the extracellular matrix (ECM) in cardiac myocytes and cardiac fibroblasts and have been suggested to be important mediators of pathological myocardial hypertrophy. We identify for the first time that integrin α11 (α11) is preferentially upregulated among integrin ß1 heterodimer-forming α-subunits in response to increased afterload induced by aortic banding (AB) in wild-type (WT) mice. Mice were anesthetized in a chamber with 4% isoflurane and 95% oxygen before being intubated and ventilated with 2.5% isoflurane and 97% oxygen. For pre- and postoperative analgesia, animals were administered 0.02-mL buprenorphine (0.3 mg/mL) subcutaneously. Surprisingly, mice lacking α11 develop myocardial hypertrophy following AB comparable to WT. In the mice lacking α11, we further show a compensatory increase in the expression of another mechanoreceptor, syndecan-4, following AB compared with WT AB mice, indicating that syndecan-4 compensated for lack of α11. Intriguingly, mice lacking mechanoreceptors α11 and syndecan-4 show ablated myocardial hypertrophy following AB compared with WT mice. Expression of the main cardiac collagen isoforms col1a2 and col3a1 was significantly reduced in AB mice lacking mechanoreceptors α11 and syndecan-4 compared with WT AB.NEW & NOTEWORTHY Despite their putative importance in stress sensing, the specific integrin α-subunit(s) involved in cardiac hypertrophy has not been identified. Here, we show that α11 and syndecan-4 are critical and interdependent mediators of the hypertrophic response to increased LV afterload. We demonstrate in cells lacking both receptors an interdependent reduction in cell attachment to the major cardiac extracellular matrix components, suggesting that their interplay represents an important mechanism for stress sensing in cardiac cells.


Asunto(s)
Isoflurano , Sindecano-4 , Animales , Cardiomegalia/metabolismo , Cadenas alfa de Integrinas/metabolismo , Integrinas/metabolismo , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Oxígeno/metabolismo , Receptores de Colágeno , Sindecano-4/genética , Sindecano-4/metabolismo
4.
J Am Heart Assoc ; 9(3): e013518, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32000579

RESUMEN

Background Pressure overload of the heart occurs in patients with hypertension or valvular stenosis and induces cardiac fibrosis because of excessive production of extracellular matrix by activated cardiac fibroblasts. This initially provides essential mechanical support to the heart, but eventually compromises function. Osteopontin is associated with fibrosis; however, the underlying signaling mechanisms are not well understood. Herein, we examine the effect of thrombin-cleaved osteopontin on fibrosis in the heart and explore the role of syndecan-4 in regulating cleavage of osteopontin. Methods and Results Osteopontin was upregulated and cleaved by thrombin in the pressure-overloaded heart of mice subjected to aortic banding. Cleaved osteopontin was higher in plasma from patients with aortic stenosis receiving crystalloid compared with blood cardioplegia, likely because of less heparin-induced inhibition of thrombin. Cleaved osteopontin and the specific osteopontin peptide sequence RGDSLAYGLR that is exposed after thrombin cleavage both induced collagen production in cardiac fibroblasts. Like osteopontin, the heparan sulfate proteoglycan syndecan-4 was upregulated after aortic banding. Consistent with a heparan sulfate binding domain in the osteopontin cleavage site, syndecan-4 was found to bind to osteopontin in left ventricles and cardiac fibroblasts and protected osteopontin from cleavage by thrombin. Shedding of the extracellular part of syndecan-4 was more prominent at later remodeling phases, at which time levels of cleaved osteopontin were increased. Conclusions Thrombin-cleaved osteopontin induces collagen production by cardiac fibroblasts. Syndecan-4 protects osteopontin from cleavage by thrombin, but this protection is lost when syndecan-4 is shed in later phases of remodeling, contributing to progression of cardiac fibrosis.


Asunto(s)
Cardiomiopatías/enzimología , Colágeno Tipo I/metabolismo , Fibroblastos/enzimología , Miocardio/enzimología , Osteopontina/metabolismo , Sindecano-4/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular , Animales , Estenosis de la Válvula Aórtica/sangre , Estenosis de la Válvula Aórtica/complicaciones , Cardiomiopatías/genética , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Línea Celular Tumoral , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Modelos Animales de Enfermedad , Fibroblastos/patología , Fibrosis , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/patología , Osteopontina/sangre , Unión Proteica , Sindecano-4/genética , Trombina/metabolismo
5.
Matrix Biol Plus ; 8: 100045, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33543038

RESUMEN

Cell-specific expression of genes offers the possibility to use their promoters to drive expression of Cre-recombinase, thereby allowing for detailed expression analysis using reporter gene systems, cell lineage tracing, conditional gene deletion, and cell ablation. In this context, current data suggest that the integrin α11 subunit has the potential to serve as a fibroblast biomarker in tissue regeneration and pathology, in particular in wound healing and in tissue- and tumor fibrosis. The mesenchyme-restricted expression pattern of integrin α11 thus prompted us to generate a novel ITGA11-driver Cre mouse strain using a ϕC31 integrase-mediated knock-in approach. In this transgenic mouse, the Cre recombinase is driven by regulatory promoter elements within the 3 kb segment of the human ITGA11 gene. ß-Galactosidase staining of embryonic tissues obtained from a transgenic ITGA11-Cre mouse line crossed with Rosa 26R reporter mice (ITGA11-Cre;R26R) revealed ITGA11-driven Cre expression and activity in mesenchymal cells in a variety of mesenchymal tissues in a pattern reminiscent of endogenous α11 protein expression in mouse embryos. Interestingly, X-gal staining of mouse embryonic fibroblasts (MEFs) isolated from the ITGA11-Cre;R26R mice indicated heterogeneity in the MEF population. ITGA11-driven Cre activity was shown in approximately 60% of the MEFs, suggesting that the expression of integrin α11 could be exploited for isolation of different fibroblast populations. ITGA11-driven Cre expression was found to be low in adult mouse tissues but was induced in granulation tissue of excisional wounds and in fibrotic hearts following aortic banding. We predict that the ITGA11-Cre transgenic mouse strain described in this report will be a useful tool in matrix research for the deletion of genes in subsets of fibroblasts in the developing mouse and for determining the function of subsets of pro-fibrotic fibroblasts in tissue fibrosis and in different subsets of cancer-associated fibroblasts in the tumor microenvironment.

6.
J Biol Chem ; 294(22): 8717-8731, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-30967474

RESUMEN

Costameres are signaling hubs at the sarcolemma and important contact points between the extracellular matrix and cell interior, sensing and transducing biomechanical signals into a cellular response. The transmembrane proteoglycan syndecan-4 localizes to these attachment points and has been shown to be important in the initial stages of cardiac remodeling, but its mechanistic function in the heart remains insufficiently understood. Here, we sought to map the cardiac interactome of syndecan-4 to better understand its function and downstream signaling mechanisms. By combining two different affinity purification methods with MS analysis, we found that the cardiac syndecan-4 interactome consists of 21 novel and 29 previously described interaction partners. Nine of the novel partners were further validated to bind syndecan-4 in HEK293 cells (i.e. CAVIN1/PTRF, CCT5, CDK9, EIF2S1, EIF4B, MPP7, PARVB, PFKM, and RASIP). We also found that 19 of the 50 interactome partners bind differently to syndecan-4 in the left ventricle lysate from aortic-banded heart failure (ABHF) rats compared with SHAM-operated animals. One of these partners was the well-known mechanotransducer muscle LIM protein (MLP), which showed direct and increased binding to syndecan-4 in ABHF. Nuclear translocation is important in MLP-mediated signaling, and we found less MLP in the nuclear-enriched fractions from syndecan-4-/- mouse left ventricles but increased nuclear MLP when syndecan-4 was overexpressed in a cardiomyocyte cell line. In the presence of a cell-permeable syndecan-4-MLP disruptor peptide, the nuclear MLP level was reduced. These findings suggest that syndecan-4 mediates nuclear translocation of MLP in the heart.


Asunto(s)
Núcleo Celular/metabolismo , Ventrículos Cardíacos/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas Musculares/metabolismo , Sindecano-4/metabolismo , Animales , Línea Celular , Células HEK293 , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Proteínas con Dominio LIM/química , Ratones , Ratones Noqueados , Proteínas Musculares/química , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Dominios PDZ , Mapas de Interacción de Proteínas , Transporte de Proteínas , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ratas , Ratas Wistar , Transducción de Señal , Sindecano-4/química , Sindecano-4/genética
7.
Cardiovasc Res ; 114(12): 1680-1690, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29878127

RESUMEN

Aims: Generation of reproducible cardiac disease phenotypes in mice is instrumental for investigating mechanisms leading to heart failure (HF). For decades, suture-based thoracic aortic constriction has been the preferred method for increasing left ventricular (LV) afterload in rodents, but the degree of stenosis resulting from this method is variable. In an effort to improve this methodology, we subjected mice to constriction of the ascending aorta using o-rings with fixed inner diameters (IDs). Methods and results: Mice of C57BL/6J and FVB/N background were subjected to constriction of the ascending aorta using o-rings with fixed IDs of 0.71, 0.66, and 0.61 mm. O-ring aortic banding resulted in 98.7% survival 2 weeks post-surgery, with very low intra- and inter-surgeon variation. When using the narrowest o-ring (0.61 mm), mice developed hypertrophy within 1 week. Over 20 weeks, the mice gradually developed reduced LV ejection fraction (LVEF) and dilatation with increased left atrial dimensions and lung weight, indicating congestion. When using o-rings with IDs of 0.66 mm and 0.71 mm, the mice developed hypertrophy, but maintained a compensated state with stabilized LVEF 8-20 weeks post-surgery. The up-regulation of signature genes associated with HF, hypertrophy, fibrosis, and the level of activation of MAPK and NFAT signalling pathways corresponded to the degree of stenosis. Conclusion: Here, we introduce a novel method for high precision aortic constriction in mice with high intra- and inter-surgeon reproducibility and low post-operative mortality that allows generation of specific cardiac disease phenotypes.


Asunto(s)
Aorta/cirugía , Hipertrofia Ventricular Izquierda/etiología , Miocardio , Disfunción Ventricular Izquierda/etiología , Función Ventricular Izquierda , Animales , Aorta/fisiopatología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Fibrosis , Regulación de la Expresión Génica , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Mediadores de Inflamación , Ligadura , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Miocardio/metabolismo , Miocardio/patología , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Fenotipo , Transducción de Señal , Volumen Sistólico , Factores de Tiempo , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología , Remodelación Ventricular
8.
PLoS One ; 11(10): e0165079, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27768722

RESUMEN

Pressure overload is a frequent cause of heart failure. Heart failure affects millions of patients worldwide and is a major cause of morbidity and mortality. Cell surface proteoglycans are emerging as molecular players in cardiac remodeling, and increased knowledge about their regulation and function is needed for improved understanding of cardiac pathogenesis. Here we investigated glypicans (GPC1-6), a family of evolutionary conserved heparan sulfate proteoglycans anchored to the extracellular leaflet of the cell membrane, in experimental and clinical heart failure, and explored the function of glypican-6 in cardiac cells in vitro. In mice subjected to pressure overload by aortic banding (AB), we observed elevated glypican-6 levels during hypertrophic remodeling and dilated, end-stage heart failure. Consistently, glypican-6 mRNA was elevated in left ventricular myocardium from explanted hearts of patients with end-stage, dilated heart failure with reduced ejection fraction. Glypican-6 levels correlated negatively with left ventricular ejection fraction in patients, and positively with lung weight after AB in mice. Glypican-6 mRNA was expressed in both cardiac fibroblasts and cardiomyocytes, and the corresponding protein displayed different sizes in the two cell types due to tissue-specific glycanation. Importantly, adenoviral overexpression of glypican-6 in cultured cardiomyocytes increased protein synthesis and induced mRNA levels of the pro-hypertrophic signature gene ACTA1 and the hypertrophy and heart failure signature genes encoding natriuretic peptides, NPPA and NPPB. Overexpression of GPC6 induced ERK1/2 phosphorylation, and co-treatment with the ERK inhibitor U0126 attenuated the GPC6-induced increase in NPPA, NPPB and protein synthesis. In conclusion, our data suggests that glypican-6 plays a role in clinical and experimental heart failure progression by regulating cardiomyocyte growth through ERK signaling.


Asunto(s)
Glipicanos/metabolismo , Insuficiencia Cardíaca/metabolismo , Sistema de Señalización de MAP Quinasas , Miocitos Cardíacos/metabolismo , Regulación hacia Arriba , Animales , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Ratas , Ratas Wistar
9.
J Autoimmun ; 50: 107-22, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24491821

RESUMEN

Regulatory B cells (Breg) have attracted increasing attention for their roles in maintaining peripheral tolerance. Interleukin 33 (IL-33) is a recently identified IL-1 family member, which leads a double-life with both pro- and anti-inflammatory properties. We report here that peritoneal injection of IL-33 exacerbated inflammatory bowel disease in IL-10-deficient (IL-10(-/-)) mice, whereas IL-33-treated IL-10-sufficient (wild type) mice were protected from the disease induction. A phenotypically unconventional subset(s) (CD19(+)CD25(+)CD1d(hi)IgM(hi)CD5(-)CD23(-)Tim-1(-)) of IL-10 producing Breg-like cells (Breg(IL-33)) was identified responsible for the protection. We demonstrated further that Breg(IL-33) isolated from these mice could suppress immune effector cell expansion and functions and, upon adoptive transfer, effectively blocked the development of spontaneous colitis in IL-10(-/-) mice. Our findings indicate an essential protective role, hence therapeutic potential, of Breg(IL-33) against mucosal inflammatory disorders in the gut.


Asunto(s)
Linfocitos B Reguladores/inmunología , Colitis/inmunología , Mucosa Gástrica/efectos de los fármacos , Interleucina-10/inmunología , Interleucinas/farmacología , Traslado Adoptivo , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Linfocitos B Reguladores/efectos de los fármacos , Linfocitos B Reguladores/trasplante , Colitis/genética , Colitis/patología , Femenino , Mucosa Gástrica/inmunología , Mucosa Gástrica/patología , Expresión Génica , Inyecciones Intraperitoneales , Interleucina-10/deficiencia , Interleucina-10/genética , Interleucina-33 , Interleucinas/inmunología , Activación de Linfocitos , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA