RESUMEN
Chronic stress results in long-term dynamic changes at multiple levels of the hypothalamic-pituitary-adrenal (HPA) axis resulting in stress axis dysregulation with long term impacts on human and animal health. However, the underlying mechanisms and dynamics of altered of HPA axis function, in particular at the level of pituitary corticotrophs, during a period of chronic stress and in the weeks after its cessation (defined as "recovery") are very poorly understood. Here we address the fundamental question of how a period of chronic stress results in altered anterior pituitary corticotroph function and whether this persists in recovery, as well as the transcriptomic changes underlying this. We demonstrate that in mice spontaneous and corticotrophin releasing hormone (CRH)-stimulated electrical excitability of corticotrophs, essential for ACTH secretion, is suppressed for weeks-months of recovery following a period of chronic stress. Surprisingly, there are only modest changes in the corticotroph transcriptome during the period of stress but major alterations occur in recovery. Importantly, while transcriptional changes for a large proportion of mRNAs follow the time course suppression of corticotroph excitability, many other genes display highly dynamic transcriptional changes with distinct time courses throughout recovery. Taken together, this suggests that chronic stress results in complex dynamic transcriptional and functional changes in corticotroph physiology, which are highly dynamic for weeks following cessation of chronic stress. These insights provide a fundamental new framework to further understand underlying molecular mechanisms as well approaches to both diagnosis and treatment of stress-related dysfunction of the HPA axis.
RESUMEN
ß-thalassemia patient treated with thalidomide: dimensional reduction of EMH foci (MRI evaluation) and reduction of hematological responce at follow-up.
Asunto(s)
Enfermedades Hematológicas , Hematopoyesis Extramedular , Talasemia alfa , Talasemia beta , Humanos , Talasemia beta/complicaciones , Talasemia beta/tratamiento farmacológico , Talidomida/uso terapéutico , EritropoyesisRESUMEN
Taking a compassionate approach to the non-human animals used in biomedical research is in line with emerging ideas around a "culture of care". It is important to expose biomedical sciences students to the concept of a culture of care at an early stage and give them opportunities to explore related practices and ideas. However, there is no simple tool to explore biomedical sciences students' attitudes towards laboratory animals. Accordingly, there is little understanding of students' feelings towards these animals, or a means of quantifying potential changes to these feelings. We developed a 12-item questionnaire designed to explore compassion (the Laboratory Animal Compassion Scale; LACS) and used it with UK-based and China-based samples of undergraduate biomedical sciences students. In the same samples, we also explored a harm-benefit analysis task and students' beliefs regarding some mental characteristics of laboratory animals, then drew correlations with the quantitative measure of compassion. Compassion levels were stable across years of study and were not related to students' level of experience of working with laboratory animals. We observed a higher level of compassion in females versus males overall, and a higher level overall in the UK-based versus China-based sample. In a task pitting animal suffering against human wellbeing, students' compassion levels correlated negatively with their acceptance of animal suffering. Compassion levels correlated positively with a belief in animals being conscious and possessing emotions. These data are in line with studies that show compassion is gender- and nationality/culture-dependent, and points to links between compassion, beliefs, and choices.
RESUMEN
The heart is the first organ to be functionally established during development, thus initiating blood circulation very early in gestation. Besides transporting oxygen and nutrients to ensure fetal growth, fetal circulation controls many crucial developmental events taking place within the endothelial layer through mechanical cues. Biomechanical signals induce blood vessel structural changes, establish arteriovenous specification, and control the development of hematopoietic stem cells. The inaccessibility of the developing tissues limits the understanding of the role of circulation in early human development; therefore, in vitro models are pivotal tools for the study of vessel mechanobiology. This paper describes a protocol to differentiate endothelial cells from human induced pluripotent stem cells and their subsequent seeding into a fluidic device to study their response to mechanical cues. This approach allows for long-term culture of endothelial cells under mechanical stimulation followed by retrieval of the endothelial cells for phenotypical and functional characterization. The in vitro model established here will be instrumental to elucidate the intracellular molecular mechanisms that transduce the signaling mediated by mechanical cues, which ultimately orchestrate vessel development during human fetal life.
Asunto(s)
Células Endoteliales , Células Madre Pluripotentes Inducidas , Humanos , Feto , Biofisica , Señales (Psicología)RESUMEN
Stress-related illness represents a major burden on health and society. Sex differences in stress-related disorders are well documented, with women having twice the lifetime rate of depression compared to men and most anxiety disorders. Anterior pituitary corticotrophs are central components of the hypothalamic-pituitary-adrenal (HPA) axis, receiving input from hypothalamic neuropeptides corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP), while regulating glucocorticoid output from the adrenal cortex. The dynamic control of electrical excitability by CRH/AVP and glucocorticoids is critical for corticotroph function; however, whether corticotrophs contribute to sexually differential responses of the HPA axis, which might underlie differences in stress-related disorders, is very poorly understood. Using perforated patch clamp electrophysiology in corticotrophs from mice expressing green fluorescent protein under the control of the Pomc promoter, we characterized basal and secretagogue-evoked excitability. Both male and female corticotrophs show predominantly single-spike action potentials under basal conditions; however, males predominantly display spikes with small-amplitude (<20 mV) afterhyperpolarizations (B-type), whereas females displayed a mixture of B-type spikes and spikes with a large-amplitude (>25 mV) afterhyperpolarization (A-type). In response to CRH, or CRH/AVP, male cells almost exclusively transition to a predominantly pseudo-plateau bursting, whereas only female B-type cells display bursting in response to CRH±AVP. Treatment of male or female corticotrophs with 1 nM estradiol (E2) for 24-72 h has no effect on the proportion of cells with A- or B-type spikes in either sex. However, E2 results in the cessation of CRH-induced bursting in both male and female corticotrophs, which can be partially reversed by adding a BK current using a dynamic clamp. RNA-seq analysis of purified corticotrophs reveals extensive differential gene expression at the transcriptional level, including more than 71 mRNAs encoding ion channel subunits. Interestingly, there is a two-fold lower level (p < 0.01) of BK channel pore-forming subunit (Kcnma1) expression in females compared to males, which may partially explain the decrease in CRH-induced bursting. This study identified sex differences at the level of the anterior pituitary corticotroph ion channel landscape and control of both spontaneous and CRH-evoked excitability. Determining the mechanisms of sex differences of corticotroph and HPA activity at the cellular level could be an important step for better understanding, diagnosing, and treating stress-related disorders.
RESUMEN
Introduction: Congenital dyserythropoietic anaemia (CDA) type IV has been associated with an amino acid substitution, Glu325Lys (E325K), in the transcription factor KLF1. These patients present with a range of symptoms, including the persistence of nucleated red blood cells (RBCs) in the peripheral blood which reflects the known role for KLF1 within the erythroid cell lineage. The final stages of RBCs maturation and enucleation take place within the erythroblastic island (EBI) niche in close association with EBI macrophages. It is not known whether the detrimental effects of the E325K mutation in KLF1 are restricted to the erythroid lineage or whether deficiencies in macrophages associated with their niche also contribute to the disease pathology. Methods: To address this question, we generated an in vitro model of the human EBI niche using induced pluripotent stem cells (iPSCs) derived from one CDA type IV patient as well as two iPSC lines genetically modified to express an KLF1-E325K-ERT2 protein that could be activated with 4OH-tamoxifen. The one patient iPSC line was compared to control lines from two healthy donors and the KLF1-E325K-ERT2 iPSC line to one inducible KLF1-ERT2 line generated from the same parental iPSCS. Results: The CDA patient-derived iPSCs and iPSCs expressing the activated KLF1-E325K-ERT2 protein showed significant deficiencies in the production of erythroid cells with associated disruption of some known KLF1 target genes. Macrophages could be generated from all iPSC lines but when the E325K-ERT2 fusion protein was activated, we noted the generation of a slightly less mature macrophage population marked by CD93. A subtle trend in their reduced ability to support RBC enucleation was also associated with macrophages carrying the E325K-ERT2 transgene. Discussion: Taken together these data support the notion that the clinically significant effects of the KLF1-E325K mutation are primarily associated with deficiencies in the erythroid lineage but it is possible that deficiencies in the niche might have the potential to exacerbate the condition. The strategy we describe provides a powerful approach to assess the effects of other mutations in KLF1 as well as other factors associated with the EBI niche.
RESUMEN
Ring-shaped lateral ventricular nodules (RSLVN) are small and round nodules attached on the ependyma of lateral ventricles with unknown nature. They are considered "leave me alone lesions" and differential diagnosis includes subependymal grey matter heterotopia, subependymomas, subependymal hamartomas, and subependymal giant cell astrocytomas. In this short article, we report imaging findings of RSLNVs discovered in five patients, underlining the pivotal role of neuroimaging in the diagnostic path.
Asunto(s)
Astrocitoma , Ventrículos Laterales , Humanos , Ventrículos Laterales/diagnóstico por imagen , Imagen por Resonancia Magnética , Epéndimo , Tomografía Computarizada por Rayos XRESUMEN
Central integration of peripheral appetite-regulating signals ensures maintenance of energy homeostasis. Thus, plasticity of circulating molecule access to neuronal circuits involved in feeding behavior plays a key role in the adaptive response to metabolic changes. However, the mechanisms involved remain poorly understood despite their relevance for therapeutic development. Here, we investigated the role of median eminence mural cells, including smooth muscle cells and pericytes, in modulating gut hormone effects on orexigenic/anorexigenic circuits. We found that conditional activation of median eminence vascular cells impinged on local blood flow velocity and altered ghrelin-stimulated food intake by delaying ghrelin access to target neurons. Thus, activation of median eminence vascular cells modulates food intake in response to peripheral ghrelin by reducing local blood flow velocity and access to the metabolic brain.
Asunto(s)
Ghrelina , Eminencia Media , Eminencia Media/metabolismo , Apetito/fisiología , Conducta Alimentaria , Ingestión de AlimentosRESUMEN
Neurodegeneration with brain iron accumulation (NBIA) comprises various rare clinical entities with brain iron overload as a common feature. Magnetic resonance imaging (MRI) allows diagnosis of this condition, and genetic molecular testing can confirm the diagnosis to better understand the intracellular damage mechanism involved. NBIA groups disorders include: pantothenate kinase-associated neurodegeneration (PKAN), mutations in the gene encoding pantothenate kinase 2 (PANK2); neuroferritinopathy, mutations in the calcium-independent phospholipase A2 gene (PLA2G6); aceruloplasminemia; and other subtypes with no specific clinical or MRI specific patterns identified. There is no causal therapy, and only symptom treatments are available for this condition. Promising strategies include the use of deferiprone (DFP), an orally administered bidentate iron chelator with the ability to pass through the blood-brain barrier. This is a prospective study analysis with a mean follow-up time of 5.5 ± 2.3 years (min-max: 2.4-9.6 years) to define DFP (15 mg/kg bid)'s efficacy and safety in the continuous treatment of 10 NBIA patients through clinical and neuroradiological evaluation. Our results show the progressive decrease in the cerebral accumulation of iron evaluated by MRI and a substantial stability of the overall clinical neurological picture without a significant correlation between clinical and radiological findings. Complete ferrochelation throughout the day appears to be of fundamental importance considering that oxidative damage is generated, above, all by non-transferrin-bound iron (NTBI); thus, we hypothesize that a (TID) administration regimen of DFP might better apply its chelating properties over 24 h with the aim to also obtain clinical improvement beyond the neuroradiological improvement.
RESUMEN
Glucocorticoids (GC) are prescribed for periods > 3 months to 1%-3% of the UK population; 10%-50% of these patients develop hypothalamus-pituitary-adrenal (HPA) axis suppression, which may last over 6 months and is associated with morbidity and mortality. Recovery of the pituitary and hypothalamus is necessary for recovery of adrenal function. We developed a mouse model of dexamethasone (DEX)-induced HPA axis dysfunction aiming to further explore recovery in the pituitary. Adult male wild-type C57BL6/J or Pomc-eGFP transgenic mice were randomly assigned to receive DEX (approximately 0.4 mg kg-1 bodyweight day-1 ) or vehicle via drinking water for 4 weeks following which treatment was withdrawn and tissues were harvested after another 0, 1, and 4 weeks. Corticotrophs were isolated from Pomc-eGFP pituitaries using fluorescence-activated cell sorting, and RNA extracted for RNA-sequencing. DEX treatment suppressed corticosterone production, which remained partially suppressed at least 1 week following DEX withdrawal. In the adrenal, Hsd3b2, Cyp11a1, and Mc2r mRNA levels were significantly reduced at time 0, with Mc2r and Cyp11a1 remaining reduced 1 week following DEX withdrawal. The corticotroph transcriptome was modified by DEX treatment, with some differences between groups persisting 4 weeks following withdrawal. No genes supressed by DEX exhibited ongoing attenuation 1 and 4 weeks following withdrawal, whereas only two genes were upregulated and remained so following withdrawal. A pattern of rebound at 1 and 4 weeks was observed in 14 genes that increased following suppression, and in six genes that were reduced by DEX and then increased. Chronic GC treatment may induce persistent changes in the pituitary that may influence future response to GC treatment or stress.
Asunto(s)
Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Hormona Adrenocorticotrópica/metabolismo , Animales , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Corticosterona , Corticotrofos/metabolismo , Dexametasona/farmacología , Glucocorticoides , Sistema Hipotálamo-Hipofisario/metabolismo , Hipotálamo/metabolismo , Masculino , Ratones , Sistema Hipófiso-Suprarrenal/metabolismo , Proopiomelanocortina/genética , ARNRESUMEN
The Superior Ophthalmic Vein (SOV) is the largest vein of the orbit and represents an important orbital venous drainage pathway. SOV is well identifiable on CT and MRI, and its alterations may be a clue for differential diagnosis. In this pictorial work we illustrate the most frequent conditions in which SOV appearance may be influenced by various pathologies, providing a pictorial guide for imaging interpretation.
Asunto(s)
Seno Cavernoso , Humanos , Imagen por Resonancia Magnética , Órbita/irrigación sanguínea , Órbita/diagnóstico por imagen , Venas/diagnóstico por imagenRESUMEN
CAA-ri is a reversible and rare encephalopathy that may manifest in patients with CAA. In this short article, we describe CT and MRI findings of CAA-ri in a 67-year-old man presented to emergency with sudden aphasia and acute cognitive dysfunction, underlining the pivotal role of neuroimaging in the diagnostic path.
Asunto(s)
Angiopatía Amiloide Cerebral , Anciano , Angiopatía Amiloide Cerebral/complicaciones , Angiopatía Amiloide Cerebral/diagnóstico por imagen , Hemorragia Cerebral , Humanos , Inflamación/complicaciones , Inflamación/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , NeuroimagenRESUMEN
Coordination of an appropriate stress response is dependent upon anterior pituitary corticotroph excitability in response to hypothalamic secretagogues and glucocorticoid negative feedback. A key determinant of corticotroph excitability is large conductance calcium- and voltage-activated (BK) potassium channels that are critical for promoting corticotrophin-releasing hormone (CRH)-induced bursting that enhances adrenocorticotrophic hormone secretion. Previous studies revealed hypothalamic-pituitary-adrenal axis hyperexcitability following chronic stress (CS) is partly a function of increased corticotroph output. Thus, we hypothesise that chronic stress promotes corticotroph excitability through a BK-dependent mechanism. Corticotrophs from CS mice displayed significant increase in spontaneous bursting, which was suppressed by the BK blocker paxilline. Mathematical modelling reveals that the time constant of BK channel activation, plus properties and proportion of BK channels functionally coupled to L-type Ca2+ channels determines bursting activity. Surprisingly, CS corticotrophs (but not unstressed) display CRH-induced bursting even when the majority of BK channels are inhibited by paxilline, which modelling suggests is a consequence of the stochastic behaviour of a small number of BK channels coupled to L-type Ca2+ channels. Our data reveal that changes in the stochastic behaviour of a small number of BK channels can finely tune corticotroph excitability through stress-induced changes in BK channel properties. Importantly, regulation of BK channel function is highly context dependent allowing dynamic control of corticotroph excitability over a large range of time domains and physiological challenges in health and disease. This is likely to occur in other BK-expressing endocrine cells, with important implications for the physiological processes they regulate and the potential for therapy. KEY POINTS: Chronic stress (CS) is predicted to modify the electrical excitability of anterior pituitary corticotrophs. Electrophysiological recordings from isolated corticotrophs from CS male mice display spontaneous electrical bursting behaviour compared to the tonic spiking behaviour of unstressed corticotrophs. The increased spontaneous bursting from CS corticotrophs is BK-dependent and mathematical modelling reveals that the time constant of activation, properties and proportion of BK channels functionally coupled to L-type calcium channels determines the promotion of bursting activity. CS (but not unstressed) corticotrophs display corticotrophin-releasing hormone-induced bursting even when the majority of BK channels are pharmacologically inhibited, which can be explained by the stochastic behaviour of a small number of BK channels with distinct properties. Corticotroph excitability can be finely tuned by the stochastic behaviour of a small number of BK channels dependent on their properties and functional co-localisation with L-type calcium channels to control corticotroph excitability over diverse time domains and physiological challenges.
Asunto(s)
Corticotrofos , Sistema Hipotálamo-Hipofisario , Animales , Corticotrofos/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Masculino , Ratones , Sistema Hipófiso-Suprarrenal/metabolismoRESUMEN
The activity of the hypothalamic-pituitary-adrenal (HPA) axis is characterised by complex dynamics spanning several timescales. This ranges from slow circadian rhythms in blood hormone concentration to faster ultradian pulses of hormone secretion and even more rapid oscillations in electrical and calcium activity in neuroendocrine cells of the hypothalamus and pituitary gland. Here, we focus on the system's oscillations on the short timescale. We highlight some of the mathematical modelling and experimental work that has been carried out to characterise the mechanisms regulating this highly dynamic mode of neuroendocrine signalling and discuss some future directions that may be explored to enhance understanding of HPA function.
RESUMEN
INTRODUCTION: Our retrospective study evaluates head CTs performed in our Hospital in the last 11 years (2009-2019) in centenarian patients. OBJECTIVES: To estimate the correlation between reasons for examination and CT findings in emergency and to evaluate if there was the expected involution of the brain by analyzing some non-emergency neuroradiological parameters (NENP). MATERIAL AND METHODS: 62 Head CTs performed on patients aged 100 and over were reviewed. They were evaluated emergency CT findings and NENP (leukoencephalopathy, enlargement of the ventricular volume, presence of vascular calcifications). For comparison, NENP were also assessed in two relatively younger populations of 62 patients aged between 65-70 (called "65-70") and 85-90 ("85-90"). RESULTS: In cases of suspected traumatic brain lesions, 11.9% (n = 5/42) of centenarians showed a cerebral bleeding; as concerns suspected stroke we found a higher concordance between clinical suspicion and CT features, 46.6% (n = 7/15). As regards NENP, no significant differences were found with respect to the "85-90" population in terms of severity of leukoencephalopathy, enlargement of the ventricular volume and presence of vascular calcifications. CONCLUSIONS: In emergency, CT plays a pivotal role in defining an immediate diagnosis and from a medico-legal point of view, resulting together with clinical observation the main strategy in the management of centenarians. By the analysis of NENP we may support that centenarians' brains on CT are similar to those of "85-90".
Asunto(s)
Centenarios , Tomografía Computarizada por Rayos X , Anciano , Anciano de 80 o más Años , Servicio de Urgencia en Hospital , Humanos , Estudios RetrospectivosRESUMEN
INTRODUCTION: Vascular Eagle syndrome, due to impingement of the extracranial internal carotid artery (ICA) by the styloid process (SP), is an uncommon and not yet widely recognized cause of ICA dissection. Up to now, this diagnosis is still presumptive, based mainly on the length of the SP. However, given the discrepancy between the much higher prevalence of an elongated SP in the population compared to the reported rate of Eagle syndrome, other anatomical factors beyond the length itself of this bony structure seem to be involved. MATERIAL AND METHODS: We performed a retrospective single center case-control study of ICA dissection related to abnormalities of styloid process and age- and sex-matched controls affected by ICA dissection not related to abnormal relationship with the styloid process. In our work instead of considering SP length as the main criteria to differentiate the two groups, we decided to consider styloid process-internal carotid artery distance (at the dissection point) as the main factor to define a styloid process related dissection (SPRD). In fact in some patients, the distance between the dissected artery and the bony prominence was virtual. RESULTS: Our study showed that in patients with SPRD the styloid process angulation on the coronal plane tends to be more acute and that styloid process-C1 distance is significantly shorter at the side of the dissection. This data reinforces the idea that ICA dissection risk in the vascular Eagle syndrome has probably a multifactorial pathogenesis.