Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 356: 124340, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38851377

RESUMEN

Small plastic debris (0.1 µm-5 mm) or microplastics (MPs) have become major pollutants of aquatic ecosystems worldwide and studies suggest that MPs exposure can pose serious threats to human and wildlife health. However, to date the potential biological impacts of MPs accumulating in low amount in tissues during early life remains unclear. Here, for a more realistic assessment, we have used environmentally representative, mildly weathered, polyethylene terephthalate microplastics (PET MPs), cryomilled (1-100 µm) and fluorescently labelled. We leveraged the amphibian Xenopus laevis tadpoles as an animal model to define the biodistribution of PET MPs and determine whether exposure to PET MPs induce perturbations of antiviral immunity. Exposure to PET MPs for 1-14 days resulted in detectable PET MPs biodistribution in intestine, gills, liver, and kidney as determined by fluorescence microscopy on whole mount tissues. PET MPs accumulation rate in tissues was further evaluated via a novel in situ enzymatic digestion and subsequent filtration using silicon nanomembranes, which shows that PET MPs rapidly accumulate in tadpole intestine, liver and kidneys and persist over a week. Longer exposure (1 month) of tadpoles to relatively low concentration of PET MPs (25 µg/ml) significantly increased susceptibility to viral infection and altered innate antiviral immunity without inducing overt inflammation. This study provides evidence that exposure to MPs negatively impact immune defenses of aquatic vertebrates.

2.
Front Med Technol ; 4: 979768, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483299

RESUMEN

The vascular system plays a critical role in the progression and resolution of inflammation. The contributions of the vascular endothelium to these processes, however, vary with tissue and disease state. Recently, tissue chip models have emerged as promising tools to understand human disease and for the development of personalized medicine approaches. Inclusion of a vascular component within these platforms is critical for properly evaluating most diseases, but many models to date use "generic" endothelial cells, which can preclude the identification of biomedically meaningful pathways and mechanisms. As the knowledge of vascular heterogeneity and immune cell trafficking throughout the body advances, tissue chip models should also advance to incorporate tissue-specific cells where possible. Here, we discuss the known heterogeneity of leukocyte trafficking in vascular beds of some commonly modeled tissues. We comment on the availability of different tissue-specific cell sources for endothelial cells and pericytes, with a focus on stem cell sources for the full realization of personalized medicine. We discuss sources available for the immune cells needed to model inflammatory processes and the findings of tissue chip models that have used the cells to studying transmigration.

3.
Eur J Cell Biol ; 101(3): 151233, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35605366

RESUMEN

Sphingosine-1-phosphate (S1P) signals to enhance or destabilize the vascular endothelial barrier depending on the receptor engaged. Here, we investigated the differential barrier effects of S1P on two influential primary endothelial cell (EC) types, human umbilical vein endothelial cells (HUVECs) and human pulmonary microvascular endothelial cells (HPMECs). S1PR1 (barrier protective) and S1PR3 (barrier disruptive) surface and gene expression were quantified by flow cytometry and immunofluorescence, and RT-qPCR, respectively. Functional evaluation of EC monolayer permeability in response to S1P was quantified with transendothelial electrical resistance (TEER) and small molecule permeability. S1P significantly enhanced HUVEC barrier function, while promoting HPMEC barrier breakdown. Immunofluorescence and flow cytometry analysis showed select, S1PR3-high HPMECs, suggesting susceptibility to barrier destabilization following S1P exposure. Reevaluation of HPMEC barrier following S1P exposure under inflamed conditions demonstrated synergistic barrier disruptive effects of pro-inflammatory cytokine and S1P. The role of the Rho-ROCK signaling pathway under these conditions was confirmed through ROCK1/2 inhibition (Y-27632). Thus, the heterogeneous responses of ECs to S1P signaling are mediated through Rho-ROCK signaling, and potentially driven by differences in the surface expression of S1PR3.


Asunto(s)
Lisofosfolípidos , Esfingosina , Células Cultivadas , Endotelio Vascular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Esfingosina/farmacología , Quinasas Asociadas a rho
4.
Am J Physiol Endocrinol Metab ; 318(5): E765-E778, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32228320

RESUMEN

We report here that the neuronal (pro)renin receptor (PRR), a key component of the brain renin-angiotensin system (RAS), plays a critical role in the central regulation of high-fat-diet (HFD)-induced metabolic pathophysiology. The neuronal PRR is known to mediate formation of the majority of angiotensin (ANG) II, a key bioactive peptide of the RAS, in the central nervous system and to regulate blood pressure and cardiovascular function. However, little is known about neuronal PRR function in overnutrition-related metabolic physiology. Here, we show that PRR deletion in neurons reduces blood pressure, neurogenic pressor activity, and fasting blood glucose and improves glucose tolerance without affecting food intake or body weight following a 16-wk HFD. Mechanistically, we found that a HFD increases levels of the PRR ligand (pro)renin in the circulation and hypothalamus and of ANG II in the hypothalamus, indicating activation of the brain RAS. Importantly, PRR deletion in neurons reduced astrogliosis and activation of the astrocytic NF-κB p65 (RelA) in the arcuate nucleus and the ventromedial nucleus of the hypothalamus. Collectively, our findings indicate that the neuronal PRR plays essential roles in overnutrition-related metabolic pathophysiology.


Asunto(s)
Astrocitos/metabolismo , Glucemia/metabolismo , Presión Sanguínea/fisiología , Hipotálamo/metabolismo , Inflamación/metabolismo , Neuronas/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Peso Corporal/fisiología , Dieta Alta en Grasa , Ingestión de Alimentos/fisiología , Ratones , Ratones Noqueados , Receptores de Superficie Celular/genética , Renina/metabolismo , Receptor de Prorenina
5.
Future Med Chem ; 11(11): 1345-1356, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31161804

RESUMEN

Eight million US adults are projected to suffer from heart failure (HF) by 2030. Of concern, 5-year mortality rates following HF diagnosis approximate 40%. Small molecule histone deacetylase (HDAC) inhibitors have demonstrated efficacy for the treatment and reversal of HF. Historically, HDACs were studied as regulators of nucleosomal histones, in which lysine deacetylation on histone tails changed DNA-histone protein electrostatic interactions, leading to chromatin condensation and changes in gene expression. However, recent proteomics studies have demonstrated that approximately 4500 proteins can be acetylated in various tissues; the function of most of these remains unknown. This Review will focus on the nonepigenetic role for lysine acetylation in the heart, with a focus on nonepigenetic actions for HDAC inhibitors on cardiac function.


Asunto(s)
Insuficiencia Cardíaca/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/uso terapéutico , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Acetilación/efectos de los fármacos , Animales , Corazón/efectos de los fármacos , Insuficiencia Cardíaca/metabolismo , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Humanos , Lisina/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
6.
J Cell Physiol ; 234(2): 1088-1098, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30203485

RESUMEN

Bovine mammary epithelial cells (MAC-Ts) are a common cell line for the study of mammary epithelial inflammation; these cells are used to mechanistically elucidate molecular underpinnings that contribute to bovine mastitis. Bovine mastitis is the most prevalent form of disease in dairy cattle that culminates in annual losses of two billion dollars for the US dairy industry. Thus, there is an urgent need for improved therapeutic strategies. Histone deacetylase (HDAC) inhibitors are efficacious in rodent models of inflammation, yet their role in bovine mammary cells remain unclear. HDACs have traditionally been studied in the regulation of nucleosomal DNA, in which deacetylation of histones impact chromatin accessibility and gene expression. Using MAC-T cells stimulated with tumor necrosis factor α (TNF-α) as a model for mammary cell inflammation, we report that inhibition of HDACs1 and 2 (HDAC1/2) attenuated TNF-α-mediated inflammatory gene expression. Of note, we report that HDAC1/2-mediated inflammatory gene expression was partly regulated by c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) phosphorylation. Here, we report that HDAC1/2 inhibition attenuated JNK and ERK activation and thus inflammatory gene expression. These data suggest that HDACs1 and 2 regulate inflammatory gene expression via canonical (i.e., gene expression) and noncanonical (e.g., signaling dependent) mechanisms. Whereas, further studies using primary cell lines and animal models are needed. Our combined data suggest that HDAC1/2-specific inhibitors may prove efficacious for the treatment of bovine mastitis.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Glándulas Mamarias Animales/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Animales , Antiinflamatorios/uso terapéutico , Bovinos , Línea Celular , Células Epiteliales/enzimología , Femenino , Regulación de la Expresión Génica , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 2/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/uso terapéutico , Glándulas Mamarias Animales/enzimología , Mastitis Bovina/tratamiento farmacológico , Mastitis Bovina/enzimología , Fosforilación , Transducción de Señal
7.
Biosci Rep ; 38(5)2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30061171

RESUMEN

Lysine residues undergo diverse and reversible post-translational modifications (PTMs). Lysine acetylation has traditionally been studied in the epigenetic regulation of nucleosomal histones that provides an important mechanism for regulating gene expression. Histone acetylation plays a key role in cardiac remodeling and function. However, recent studies have shown that thousands of proteins can be acetylated at multiple acetylation sites, suggesting the acetylome rivals the kinome as a PTM. Based on this, we examined the impact of obesity on protein lysine acetylation in the left ventricle (LV) of male c57BL/6J mice. We reported that obesity significantly increased heart enlargement and fibrosis. Moreover, immunoblot analysis demonstrated that lysine acetylation was markedly altered with obesity and that this phenomenon was cardiac tissue specific. Mass spectral analysis identified 2515 proteins, of which 65 were significantly impacted by obesity. Ingenuity Pathway Analysis® (IPA) further demonstrated that these proteins were involved in metabolic dysfunction and cardiac remodeling. In addition to total protein, 189 proteins were acetylated, 14 of which were significantly impacted by obesity. IPA identified the Cardiovascular Disease Pathway as significantly regulated by obesity. This network included aconitate hydratase 2 (ACO2), and dihydrolipoyl dehydrogenase (DLD), in which acetylation was significantly increased by obesity. These proteins are known to regulate cardiac function yet, the impact for ACO2 and DLD acetylation remains unclear. Combined, these findings suggest a critical role for cardiac acetylation in obesity-mediated remodeling; this has the potential to elucidate novel targets that regulate cardiac pathology.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Obesidad/metabolismo , Proteínas/metabolismo , Espectrometría de Masas en Tándem/métodos , Animales , Dieta Alta en Grasa/efectos adversos , Lisina/metabolismo , Masculino , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/fisiopatología , Procesamiento Proteico-Postraduccional , Proteínas/genética , Proteoma/análisis , Proteoma/metabolismo , Remodelación Ventricular
8.
Mol Nutr Food Res ; 61(4)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27981795

RESUMEN

SCOPE: Nutrigenomics is a rapidly expanding field that elucidates the link between diet-genome interactions. Recent evidence demonstrates that regulation of the epigenome, and in particular inhibition of histone deacetylases (HDACs), impact pathogenetic mechanisms involved in chronic disease. Few studies, to date, have screened libraries of bioactive compounds that act as epigenetic modifiers. This study screened a library of 131 natural compounds to determine bioactive compounds that inhibit Zn-dependent HDAC activity. METHODS AND RESULTS: Using class-specific HDAC substrates, we screened 131 natural compounds for HDAC activity in bovine cardiac tissue. From this screen, we identified 18 bioactive compound HDAC inhibitors. Using our class-specific HDAC substrates, we next screened these 18 bioactive compounds against recombinant HDAC proteins. Consistent with inhibition of HDAC activity, these compounds were capable of inhibiting activity of individual HDAC isoforms. Lastly, we report that treatment of H9c2 cardiac myoblasts with bioactive HDAC inhibitors was sufficient to increase lysine acetylation as assessed via immunoblot. CONCLUSION: This study provided the first step in identifying multiple bioactive compound HDAC inhibitors. Taken together, this report sets the stage for future exploration of these bioactive compounds as epigenetic regulators to potentially ameliorate chronic disease.


Asunto(s)
Epigenómica , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Acetilación , Animales , Bovinos , Histona Desacetilasa 1/metabolismo , Histona Desacetilasas/efectos de los fármacos , Histonas/metabolismo , Humanos , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA