Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 21(5): e48977, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32285620

RESUMEN

Alternative splicing (AS) is a major source of transcriptome diversity. Long noncoding RNAs (lncRNAs) have emerged as regulators of AS through different molecular mechanisms. In Arabidopsis thaliana, the AS regulators NSRs interact with the ALTERNATIVE SPLICING COMPETITOR (ASCO) lncRNA. Here, we analyze the effect of the knock-down and overexpression of ASCO at the genome-wide level and find a large number of deregulated and differentially spliced genes related to flagellin responses and biotic stress. In agreement, ASCO-silenced plants are more sensitive to flagellin. However, only a minor subset of deregulated genes overlaps with the AS defects of the nsra/b double mutant, suggesting an alternative way of action for ASCO. Using biotin-labeled oligonucleotides for RNA-mediated ribonucleoprotein purification, we show that ASCO binds to the highly conserved spliceosome component PRP8a. ASCO overaccumulation impairs the recognition of specific flagellin-related transcripts by PRP8a. We further show that ASCO also binds to another spliceosome component, SmD1b, indicating that it interacts with multiple splicing factors. Hence, lncRNAs may integrate a dynamic network including spliceosome core proteins, to modulate transcriptome reprogramming in eukaryotes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ARN Largo no Codificante , Empalme Alternativo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Empalme de ARN/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transcriptoma
2.
Plant Cell ; 32(1): 123-138, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31712406

RESUMEN

The lack of resolution when studying the many different ubiquitin chain types found in eukaryotic cells has been a major hurdle to our understanding of their specific roles. We currently have very little insight into the cellular and physiological functions of Lys-63 (K63)-linked ubiquitin chains, although they are the second most abundant forms of ubiquitin in plant cells. To overcome this problem, we developed several large-scale approaches to characterize (1) the E2-E3 ubiquitination machinery driving K63-linked ubiquitin chain formation and (2) K63 polyubiquitination targets to provide a comprehensive picture of K63 polyubiquitin networks in Arabidopsis (Arabidopsis thaliana). Our work identified the ubiquitin-conjugating enzymes (E2s) UBC35/36 as the major drivers of K63 polyubiquitin chain formation and highlights the major role of these proteins in plant growth and development. Interactome approaches allowed us to identify many proteins that interact with the K63 polyubiquitination-dedicated E2s UBC35/36 and their cognate E2 variants, including more than a dozen E3 ligases and their putative targets. In parallel, we improved the in vivo detection of proteins decorated with K63-linked ubiquitin chains by sensor-based proteomics, yielding important insights into the roles of K63 polyubiquitination in plant cells. This work strongly increases our understanding of K63 polyubiquitination networks and functions in plants.


Asunto(s)
Genómica , Lisina/metabolismo , Células Vegetales/metabolismo , Poliubiquitina/metabolismo , Proteómica , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Catalogación , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
3.
Nucleic Acids Res ; 46(5): 2169-2184, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29425321

RESUMEN

Massive high-throughput sequencing techniques allowed the identification of thousands of noncoding RNAs (ncRNAs) and a plethora of different mRNA processing events occurring in higher organisms. Long ncRNAs can act directly as long transcripts or can be processed into active small si/miRNAs. They can modulate mRNA cleavage, translational repression or the epigenetic landscape of their target genes. Recently, certain long ncRNAs have been shown to play a crucial role in the regulation of alternative splicing in response to several stimuli or during disease. In this review, we focus on recent discoveries linking gene regulation by alternative splicing and its modulation by long and small ncRNAs.


Asunto(s)
Empalme Alternativo , Regulación de la Expresión Génica , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Pequeño no Traducido/genética , Animales , Humanos , Modelos Genéticos , Neoplasias/genética , Neoplasias/patología
4.
New Phytol ; 217(3): 995-1011, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29194634

RESUMEN

Contents Summary 995 I. Introduction 995 II. The plant Ub machinery 996 III. From Ub to Ub linkage types in plants 997 IV. Increasing analytical resolution for K63 polyUb in plants 998 V. How to build K63 polyUb chains? 998 VI. Cellular roles of K63 polyUb in plants 999 VII. Physiological roles of K63 polyUb in plants 1004 VIII. Future perspectives: towards the next level of the Ub code 1006 Acknowledgements 1006 References 1007 SUMMARY: Ubiquitination is a post-translational modification essential for the regulation of eukaryotic proteins, having an impact on protein fate, function, localization or activity. What originally appeared to be a simple system to regulate protein turnover by the 26S proteasome is now known to be the most intricate regulatory process cells have evolved. Ubiquitin can be arranged in countless chain assemblies, triggering various cellular outcomes. Polyubiquitin chains using lysine-63 from ubiquitin represent the second most abundant type of ubiquitin modification. Recent studies have exposed their common function in proteasome-independent functions in non-plant model organisms. The existence of lysine-63 polyubiquitination in plants is, however, only just emerging. In this review, we discuss the recent advances on the characterization of ubiquitin chains and the molecular mechanisms driving the formation of lysine-63-linked ubiquitin modifications. We provide an overview of the roles associated with lysine-63 polyubiquitination in plant cells in the light of what is known in non-plant models. Finally, we review the crucial roles of lysine-63 polyubiquitin-dependent processes in plant growth, development and responses to environmental conditions.


Asunto(s)
Lisina/metabolismo , Plantas/metabolismo , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinación , Secuencia de Aminoácidos , Células Vegetales/metabolismo , Poliubiquitina/química
5.
RNA Biol ; 13(1): 59-67, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26849165

RESUMEN

RNA-seq data analysis has revealed abundant alternative splicing in eukaryotic mRNAs. However, splicing is only one of many processing events that transcripts may undergo during their lifetime. We present here RNAprof (RNA profile analysis), a program for the detection of differential processing events from the comparison of RNA-seq experiments. RNAprof implements a specific gene-level normalization procedure and compares RNA-seq coverage profiles at nucleotide resolution to detect regions of significant coverage differences, independently of splice sites or other gene features. We used RNAprof to analyze the effect of alternative-splicing regulators NSRa and NSRb on the Arabidopsis thaliana transcriptome. A number of intron retention events and alternative transcript structures were specifically detected by RNAprof and confirmed by qRT-PCR. Further tests using a public Mus musculus RNA-seq dataset and comparisons with other RNA isoform predictors showed that RNAprof uniquely identified sets of highly significant processing events as well as other relevant library-specific differences in RNA-seq profiles. This highlights an important layer of variation that remains undetected by current protocols for RNA-seq analysis.


Asunto(s)
Biología Computacional/métodos , Procesamiento Postranscripcional del ARN , ARN/genética , Análisis de Secuencia de ARN/métodos , Empalme Alternativo , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Biología Computacional/normas , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/normas , Ratones , Análisis de Secuencia de ARN/normas
6.
Trends Plant Sci ; 20(6): 362-71, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25850611

RESUMEN

Noncoding RNAs have emerged as major components of the eukaryotic transcriptome. Genome-wide analyses revealed the existence of thousands of long noncoding RNAs (lncRNAs) in several plant species. Plant lncRNAs are transcribed by the plant-specific RNA polymerases Pol IV and Pol V, leading to transcriptional gene silencing, as well as by Pol II. They are involved in a wide range of regulatory mechanisms impacting on gene expression, including chromatin remodeling, modulation of alternative splicing, fine-tuning of miRNA activity, and the control of mRNA translation or accumulation. Recently, dual noncoding transcription by alternative RNA polymerases was implicated in epigenetic and chromatin conformation dynamics. This review integrates the current knowledge on the regulatory mechanisms acting through plant noncoding transcription.


Asunto(s)
Plantas/genética , ARN no Traducido/genética , Transcripción Genética , Metilación de ADN/genética , Epigénesis Genética , Genoma de Planta
7.
Mol Cell ; 55(3): 383-96, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25018019

RESUMEN

The eukaryotic epigenome is shaped by the genome topology in three-dimensional space. Dynamic reversible variations in this epigenome structure directly influence the transcriptional responses to developmental cues. Here, we show that the Arabidopsis long intergenic noncoding RNA (lincRNA) APOLO is transcribed by RNA polymerases II and V in response to auxin, a phytohormone controlling numerous facets of plant development. This dual APOLO transcription regulates the formation of a chromatin loop encompassing the promoter of its neighboring gene PID, a key regulator of polar auxin transport. Altering APOLO expression affects chromatin loop formation, whereas RNA-dependent DNA methylation, active DNA demethylation, and Polycomb complexes control loop dynamics. This dynamic chromatin topology determines PID expression patterns. Hence, the dual transcription of a lincRNA influences local chromatin topology and directs dynamic auxin-controlled developmental outputs on neighboring genes. This mechanism likely underscores the adaptive success of plants in diverse environments and may be widespread in eukaryotes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Ácidos Indolacéticos/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , ARN Polimerasa II/metabolismo , ARN Largo no Codificante/genética , ARN de Planta/genética , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ensamble y Desensamble de Cromatina , Metilación de ADN , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Mutación , Proteínas del Grupo Polycomb/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
8.
Dev Cell ; 30(2): 166-76, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-25073154

RESUMEN

Alternative splicing (AS) of pre-mRNA represents a major mechanism underlying increased transcriptome and proteome complexity. Here, we show that the nuclear speckle RNA-binding protein (NSR) and the AS competitor long noncoding RNA (or ASCO-lncRNA) constitute an AS regulatory module. AtNSR-GFP translational fusions are expressed in primary and lateral root (LR) meristems. Double Atnsr mutants and ASCO overexpressors exhibit an altered ability to form LRs after auxin treatment. Interestingly, auxin induces a major change in AS patterns of many genes, a response largely dependent on NSRs. RNA immunoprecipitation assays demonstrate that AtNSRs interact not only with their alternatively spliced mRNA targets but also with the ASCO-RNA in vivo. The ASCO-RNA displaces an AS target from an NSR-containing complex in vitro. Expression of ASCO-RNA in Arabidopsis affects the splicing patterns of several NSR-regulated mRNA targets. Hence, lncRNA can hijack nuclear AS regulators to modulate AS patterns during development.


Asunto(s)
Empalme Alternativo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , ARN Largo no Codificante/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Meristema/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , ARN Largo no Codificante/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...