Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cell Endocrinol ; 590: 112273, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38763427

RESUMEN

High serum estrogen concentrations are associated with asthma development and severity, suggesting a link between estradiol and airway hyperresponsiveness (AHR). 17ß-estradiol (E2) has non-genomic effects via Ca2+ regulatory mechanisms; however, its effect on the plasma membrane Ca2+-ATPases (PMCA1 and 4) and sarcoplasmic reticulum Ca2+-ATPase (SERCA) is unknown. Hence, in the present study, we aim to demonstrate if E2 favors AHR by increasing intracellular Ca2+ concentrations in guinea pig airway smooth muscle (ASM) through a mechanism involving Ca2+-ATPases. In guinea pig ASM, Ca2+ microfluorometry, muscle contraction, and Western blot were evaluated. Then, we performed molecular docking analysis between the estrogens and Ca2+ ATPases. In tracheal rings, E2 produced AHR to carbachol. In guinea pig myocytes, acute exposure to physiological levels of E2 modified the transient Ca2+ peak induced by caffeine to a Ca2+ plateau. The incubation with PMCA inhibitors (lanthanum and carboxyeosin, CE) partially reversed the E2-induced sustained plateau in the caffeine response. In contrast, cyclopiazonic acid (SERCA inhibitor), U-0126 (an inhibitor of ERK 1/2), and choline chloride did not modify the Ca2+ plateau produced by E2. The mitochondrial uniporter activity and the capacitative Ca2+ entry were unaffected by E2. In guinea pig ASM, Western blot analysis demonstrated PMCA1 and PMCA4 expression. The results from the docking modeling demonstrate that E2 binds to both plasma membrane ATPases. In guinea pig tracheal smooth muscle, inhibiting the PMCA with CE, induced hyperresponsiveness to carbachol. 17ß-estradiol produces hyperresponsiveness by inhibiting the PMCA in the ASM and could be one of the mechanisms responsible for the increase in asthmatic crisis in women.


Asunto(s)
Calcio , Estradiol , Simulación del Acoplamiento Molecular , ATPasas Transportadoras de Calcio de la Membrana Plasmática , Animales , Cobayas , Estradiol/farmacología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Calcio/metabolismo , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Masculino , Tráquea/efectos de los fármacos , Tráquea/metabolismo , Contracción Muscular/efectos de los fármacos , Hipersensibilidad Respiratoria/inducido químicamente , Hipersensibilidad Respiratoria/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Carbacol/farmacología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo
2.
Molecules ; 29(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38792145

RESUMEN

The Cupressaceae family includes species considered to be medicinal. Their essential oil is used for headaches, colds, cough, and bronchitis. Cedar trees like Chamaecyparis lawsoniana (C. lawsoniana) are commonly found in urban areas. We investigated whether C. lawsoniana exerts some of its effects by modifying airway smooth muscle (ASM) contractility. The leaves of C. lawsoniana (363 g) were pulverized mechanically, and extracts were obtained by successive maceration 1:10 (w:w) with methanol/CHCl3. Guinea pig tracheal rings were contracted with KCl, tetraethylammonium (TEA), histamine (HIS), or carbachol (Cch) in organ baths. In the Cch experiments, tissues were pre-incubated with D-600, an antagonist of L-type voltage-dependent Ca2+ channels (L-VDCC) before the addition of C. lawsoniana. Interestingly, at different concentrations, C. lawsoniana diminished the tracheal contractions induced by KCl, TEA, HIS, and Cch. In ASM cells, C. lawsoniana significantly diminished L-type Ca2+ currents. ASM cells stimulated with Cch produced a transient Ca2+ peak followed by a sustained plateau maintained by L-VDCC and store-operated Ca2+ channels (SOCC). C. lawsoniana almost abolished this last response. These results show that C. lawsoniana, and its active metabolite quercetin, relax the ASM by inhibiting the L-VDCC and SOCC; further studies must be performed to obtain the complete set of metabolites of the extract and study at length their pharmacological properties.


Asunto(s)
Calcio , Chamaecyparis , Contracción Muscular , Músculo Liso , Extractos Vegetales , Quercetina , Tráquea , Animales , Cobayas , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Contracción Muscular/efectos de los fármacos , Quercetina/farmacología , Quercetina/química , Tráquea/efectos de los fármacos , Tráquea/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Chamaecyparis/química , Calcio/metabolismo , Masculino , Bloqueadores de los Canales de Calcio/farmacología , Histamina/metabolismo , Canales de Calcio Tipo L/metabolismo , Hojas de la Planta/química
3.
Int J Mol Med ; 53(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38038161

RESUMEN

Schizophrenia (SZ) is a multifactorial disorder characterized by volume reduction in gray and white matter, oxidative stress, neuroinflammation, altered neurotransmission, as well as molecular deficiencies such as punctual mutation in Disrupted­in­Schizophrenia 1 protein. In this regard, it is essential to understand the underlying molecular disturbances to determine the pathophysiological mechanisms of the disease. The signaling pathways activated by G protein­coupled receptors (GPCRs) are key molecular signaling pathways altered in SZ. Convenient models need to be designed and validated to study these processes and mechanisms at the cellular level. Cultured olfactory stem cells are used to investigate neural molecular and cellular alterations related to the pathophysiology of SZ. Multipotent human olfactory stem cells are undifferentiated and express GPCRs involved in numerous physiological functions such as proliferation, differentiation and bioenergetics. The use of olfactory stem cells obtained from patients with SZ may identify alterations in GPCR signaling that underlie dysfunctional processes in both undifferentiated and specialized neurons or derived neuroglia. The present review aimed to analyze the role of GPCRs and their signaling in the pathophysiology of SZ. Culture of olfactory epithelial cells constitutes a suitable model to study SZ and other psychiatric disorders at the cellular level.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Células Neuroepiteliales/metabolismo , Neuronas/metabolismo , Receptores Acoplados a Proteínas G , Células Madre/metabolismo
4.
Cells ; 12(23)2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38067152

RESUMEN

The function of the circadian cycle is to determine the natural 24 h biological rhythm, which includes physiological, metabolic, and hormonal changes that occur daily in the body. This cycle is controlled by an internal biological clock that is present in the body's tissues and helps regulate various processes such as sleeping, eating, and others. Interestingly, animal models have provided enough evidence to assume that the alteration in the circadian system leads to the appearance of numerous diseases. Alterations in breathing patterns in lung diseases can modify oxygenation and the circadian cycles; however, the response mechanisms to hypoxia and their relationship with the clock genes are not fully understood. Hypoxia is a condition in which the lack of adequate oxygenation promotes adaptation mechanisms and is related to several genes that regulate the circadian cycles, the latter because hypoxia alters the production of melatonin and brain physiology. Additionally, the lack of oxygen alters the expression of clock genes, leading to an alteration in the regularity and precision of the circadian cycle. In this sense, hypoxia is a hallmark of a wide variety of lung diseases. In the present work, we intended to review the functional repercussions of hypoxia in the presence of asthma, chronic obstructive sleep apnea, lung cancer, idiopathic pulmonary fibrosis, obstructive sleep apnea, influenza, and COVID-19 and its repercussions on the circadian cycles.


Asunto(s)
Enfermedades Pulmonares , Apnea Obstructiva del Sueño , Animales , Humanos , Ritmo Circadiano/genética , Hipoxia , Relojes Biológicos/fisiología
5.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37895016

RESUMEN

It has been observed that plasmatic concentrations of estrogens, progesterone, or both correlate with symptoms in asthmatic women. Fluctuations in female sex steroid concentrations during menstrual periods are closely related to asthma symptoms, while menopause induces severe physiological changes that might require hormonal replacement therapy (HRT), that could influence asthma symptoms in these women. Late-onset asthma (LOA) has been categorized as a specific asthmatic phenotype that includes menopausal women and novel research regarding therapeutic alternatives that might provide relief to asthmatic women suffering LOA warrants more thorough and comprehensive analysis. Therefore, the present review proposes phytoestrogens as a promising HRT that might provide these females with relief for both their menopause and asthma symptoms. Besides their well-recognized anti-inflammatory and antioxidant capacities, phytoestrogens activate estrogen receptors and promote mild hormone-like responses that benefit postmenopausal women, particularly asthmatics, constituting therefore a very attractive potential therapy largely due to their low toxicity and scarce side effects.


Asunto(s)
Asma , Fitoestrógenos , Femenino , Humanos , Fitoestrógenos/uso terapéutico , Terapia de Reemplazo de Estrógeno , Terapia de Reemplazo de Hormonas , Menopausia/fisiología , Estrógenos/uso terapéutico , Asma/tratamiento farmacológico
6.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175587

RESUMEN

To preserve ionic homeostasis (primarily Ca2+, K+, Na+, and Cl-), in the airway smooth muscle (ASM) numerous transporters (channels, exchangers, and pumps) regulate the influx and efflux of these ions. Many of intracellular processes depend on continuous ionic permeation, including exocytosis, contraction, metabolism, transcription, fecundation, proliferation, and apoptosis. These mechanisms are precisely regulated, for instance, through hormonal activity. The lipophilic nature of steroidal hormones allows their free transit into the cell where, in most cases, they occupy their cognate receptor to generate genomic actions. In the sense, estrogens can stimulate development, proliferation, migration, and survival of target cells, including in lung physiology. Non-genomic actions on the other hand do not imply estrogen's intracellular receptor occupation, nor do they initiate transcription and are mostly immediate to the stimulus. Among estrogen's non genomic responses regulation of calcium homeostasis and contraction and relaxation processes play paramount roles in ASM. On the other hand, disruption of calcium homeostasis has been closely associated with some ASM pathological mechanism. Thus, this paper intends to summarize the effects of estrogen on ionic handling proteins in ASM. The considerable diversity, range and power of estrogens regulates ionic homeostasis through genomic and non-genomic mechanisms.


Asunto(s)
Calcio , Miocitos del Músculo Liso , Calcio/metabolismo , Miocitos del Músculo Liso/metabolismo , Contracción Muscular/fisiología , Músculo Liso/metabolismo , Canales Iónicos/metabolismo , Estrógenos/metabolismo
7.
Life (Basel) ; 12(9)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36143420

RESUMEN

The SARS-CoV-2 pandemic has confirmed the apocalyptic predictions that virologists have been making for several decades. The challenge the world is facing is that of trying to find a possible treatment, and a viable and expedient option for addressing this challenge is the repurposing of drugs. However, in some cases, although these drugs are approved for use in humans, the mechanisms of action involved are unknown. In this sense, to justify its therapeutic application to a new disease, it is ideal, but not necessary, to know the basic mechanisms of action involved in a drug's biological effects. This review compiled the available information regarding the various effects attributed to Ivermectin. The controversy over its use for the treatment of COVID-19 is demonstrated by this report that considers the proposal unfeasible because the therapeutic doses proposed to achieve this effect cannot be achieved. However, due to the urgent need to find a treatment, an exhaustive and impartial review is necessary in order to integrate the knowledge that exists, to date, of the possible mechanisms through which the treatment may be helpful in defining safe doses and schedules of Ivermectin.

8.
Int J Mol Sci ; 23(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35456985

RESUMEN

Theophylline (3-methyxanthine) is a historically prominent drug used to treat respiratory diseases, alone or in combination with other drugs. The rapid onset of the COVID-19 pandemic urged the development of effective pharmacological treatments to directly attack the development of new variants of the SARS-CoV-2 virus and possess a therapeutical battery of compounds that could improve the current management of the disease worldwide. In this context, theophylline, through bronchodilatory, immunomodulatory, and potentially antiviral mechanisms, is an interesting proposal as an adjuvant in the treatment of COVID-19 patients. Nevertheless, it is essential to understand how this compound could behave against such a disease, not only at a pharmacodynamic but also at a pharmacokinetic level. In this sense, the quickest approach in drug discovery is through different computational methods, either from network pharmacology or from quantitative systems pharmacology approaches. In the present review, we explore the possibility of using theophylline in the treatment of COVID-19 patients since it seems to be a relevant candidate by aiming at several immunological targets involved in the pathophysiology of the disease. Theophylline down-regulates the inflammatory processes activated by SARS-CoV-2 through various mechanisms, and herein, they are discussed by reviewing computational simulation studies and their different applications and effects.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Antivirales/farmacocinética , Antivirales/uso terapéutico , Humanos , Simulación del Acoplamiento Molecular , Pandemias , SARS-CoV-2 , Teofilina/farmacología , Teofilina/uso terapéutico
9.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35055119

RESUMEN

The health scourge imposed on humanity by the COVID-19 pandemic seems not to recede. This fact warrants refined and novel ideas analyzing different aspects of the illness. One such aspect is related to the observation that most COVID-19 casualties were older males, a tendency also noticed in the epidemics of SARS-CoV in 2003 and the Middle East respiratory syndrome in 2012. This gender-related difference in the COVID-19 death toll might be directly involved with testosterone (TEST) and its plasmatic concentration in men. TEST has been demonstrated to provide men with anti-inflammatory and immunological advantages. As the plasmatic concentration of this androgen decreases with age, the health benefit it confers also diminishes. Low plasmatic levels of TEST can be determinant in the infection's outcome and might be related to a dysfunctional cell Ca2+ homeostasis. Not only does TEST modulate the activity of diverse proteins that regulate cellular calcium concentrations, but these proteins have also been proven to be necessary for the replication of many viruses. Therefore, we discuss herein how TEST regulates different Ca2+-handling proteins in healthy tissues and propose how low TEST concentrations might facilitate the replication of the SARS-CoV-2 virus through the lack of modulation of the mechanisms that regulate intracellular Ca2+ concentrations.


Asunto(s)
COVID-19/metabolismo , COVID-19/mortalidad , Testosterona/metabolismo , Factores de Edad , Anciano , Envejecimiento/metabolismo , Animales , COVID-19/etiología , Señalización del Calcio , Humanos , Inflamación/metabolismo , Masculino , Morbilidad
10.
Int J Mol Sci ; 22(11)2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34067243

RESUMEN

The COVID-19 pandemic has established an unparalleled necessity to rapidly find effective treatments for the illness; unfortunately, no specific treatment has been found yet. As this is a new emerging chaotic situation, already existing drugs have been suggested to ameliorate the infection of SARS-CoV-2. The consumption of caffeine has been suggested primarily because it improves exercise performance, reduces fatigue, and increases wakefulness and awareness. Caffeine has been proven to be an effective anti-inflammatory and immunomodulator. In airway smooth muscle, it has bronchodilator effects mainly due to its activity as a phosphodiesterase inhibitor and adenosine receptor antagonist. In addition, a recent published document has suggested the potential antiviral activity of this drug using in silico molecular dynamics and molecular docking; in this regard, caffeine might block the viral entrance into host cells by inhibiting the formation of a receptor-binding domain and the angiotensin-converting enzyme complex and, additionally, might reduce viral replication by the inhibition of the activity of 3-chymotrypsin-like proteases. Here, we discuss how caffeine through certain mechanisms of action could be beneficial in SARS-CoV-2. Nevertheless, further studies are required for validation through in vitro and in vivo models.


Asunto(s)
Antiinflamatorios/farmacología , Antivirales/farmacología , COVID-19/dietoterapia , Cafeína/farmacología , Reposicionamiento de Medicamentos/métodos , Músculo Liso/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , COVID-19/metabolismo , COVID-19/fisiopatología , Humanos , Factores Inmunológicos/farmacología , Simulación de Dinámica Molecular , Músculo Liso/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...