Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 327(3): C557-C570, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38985989

RESUMEN

The exchange protein directly activated by cAMP (EPAC) has been implicated in cardiac proarrhythmic signaling pathways including spontaneous diastolic Ca2+ leak from sarcoplasmic reticulum and increased action potential duration (APD) in isolated ventricular cardiomyocytes. The action potential (AP) lengthening following acute EPAC activation is mainly due to a decrease of repolarizing steady-state K+ current (IKSS) but the mechanisms involved remain unknown. This study aimed to assess the role of EPAC1 and EPAC2 in the decrease of IKSS and to investigate the underlying signaling pathways. AP and K+ currents were recorded with the whole cell configuration of the patch-clamp technique in freshly isolated rat ventricular myocytes. EPAC1 and EPAC2 were pharmacologically activated with 8-(4-chlorophenylthio)-2'-O-methyl-cAMP acetoxymethyl ester (8-CPTAM, 10 µmol/L) and inhibited with R-Ce3F4 and ESI-05, respectively. Inhibition of EPAC1 and EPAC2 significantly decreased the effect of 8-CPTAM on APD and IKSS showing that both EPAC isoforms are involved in these effects. Unexpectedly, calmodulin-dependent protein kinase II (CaMKII) inhibition by AIP or KN-93, and Ca2+ chelation by intracellular BAPTA, did not impact the response to 8-CPTAM. However, inhibition of PLC/PKC and nitric oxide synthase (NOS)/PKG pathways partially prevents the 8-CPTAM-dependent decrease of IKSS. Finally, the cumulative inhibition of PKC and PKG blocked the 8-CPTAM effect, suggesting that these two actors work along parallel pathways to regulate IKSS upon EPAC activation. On the basis of such findings, we propose that EPAC1 and EPAC2 are involved in APD lengthening by inhibiting a K+ current via both PLC/PKC and NOS/PKG pathways. This may have pathological implications since EPAC is upregulated in diseases such as cardiac hypertrophy.NEW & NOTEWORHTY Exchange protein directly activated by cAMP (EPAC) proteins modulate ventricular electrophysiology at the cellular level. Both EPAC1 and EPAC2 isoforms participate in this effect. Mechanistically, PLC/PKC and nitric oxide synthase (NO)/PKG pathways are involved in regulating K+ repolarizing current whereas the well-known downstream effector of EPAC, calmodulin-dependent protein kinase II (CaMKII), does not participate. This may have pathological implications since EPAC is upregulated in diseases such as cardiac hypertrophy. Thus, EPAC inhibition may be a new approach to prevent arrhythmias under pathological conditions.


Asunto(s)
Potenciales de Acción , Factores de Intercambio de Guanina Nucleótido , Ventrículos Cardíacos , Miocitos Cardíacos , Proteína Quinasa C , Transducción de Señal , Animales , Factores de Intercambio de Guanina Nucleótido/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Proteína Quinasa C/metabolismo , Ratas , Potenciales de Acción/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/citología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa/antagonistas & inhibidores , Fosfolipasas de Tipo C/metabolismo , Fosfolipasas de Tipo C/antagonistas & inhibidores , Masculino , Ratas Wistar , Potasio/metabolismo , AMP Cíclico/metabolismo
2.
Mol Oncol ; 18(8): 1853-1865, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38480668

RESUMEN

No data are currently available on the functional role of small conductance Ca2+-activated K+ channels (SKCa) in ovarian cancer. Here, we characterized the role of SK2 (KCa2.2) in ovarian cancer cell migration and chemosensitivity. Using the selective non-cell-permeant SK2 inhibitor Lei-Dab7, we identified functional SK2 channels at the plasma membrane, regulating store-operated Ca2+ entry (SOCE) in both cell lines tested (COV504 and OVCAR3). Silencing KCNN2 with short interfering RNA (siRNA), or blocking SK2 activity with Lei-Dab7, decreased cell migration. The more robust effect of KCNN2 knockdown compared to Lei-Dab7 treatment suggested the involvement of functional intracellular SK2 channels in both cell lines. In cells treated with lysophosphatidic acid (LPA), an ovarian cancer biomarker of progression, SK2 channels are a key player of LPA pro-migratory activity but their role in SOCE is abolished. Concerning chemotherapy, SK2 inhibition increased chemoresistance to Taxol® and low KCNN2 mRNA expression was associated with the worst prognosis for progression-free survival in patients with serous ovarian cancer. The dual roles of SK2 mean that SK2 activators could be used as an adjuvant chemotherapy to potentiate treatment efficacy and SK2 inhibitors could be administrated as monotherapy to limit cancer cell dissemination.


Asunto(s)
Membrana Celular , Movimiento Celular , Neoplasias Ováricas , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Humanos , Femenino , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Línea Celular Tumoral , Membrana Celular/metabolismo , Resistencia a Antineoplásicos/genética , Lisofosfolípidos/metabolismo , Calcio/metabolismo
3.
J Biol Chem ; 299(11): 105310, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37778728

RESUMEN

T-cell receptor stimulation triggers cytosolic Ca2+ signaling by inositol-1,4,5-trisphosphate (IP3)-mediated Ca2+ release from the endoplasmic reticulum (ER) and Ca2+ entry through Ca2+ release-activated Ca2+ (CRAC) channels gated by ER-located stromal-interacting molecules (STIM1/2). Physiologically, cytosolic Ca2+ signaling manifests as regenerative Ca2+ oscillations, which are critical for nuclear factor of activated T-cells-mediated transcription. In most cells, Ca2+ oscillations are thought to originate from IP3 receptor-mediated Ca2+ release, with CRAC channels indirectly sustaining them through ER refilling. Here, experimental and computational evidence support a multiple-oscillator mechanism in Jurkat T-cells whereby both IP3 receptor and CRAC channel activities oscillate and directly fuel antigen-evoked Ca2+ oscillations, with the CRAC channel being the major contributor. KO of either STIM1 or STIM2 significantly reduces CRAC channel activity. As such, STIM1 and STIM2 synergize for optimal Ca2+ oscillations and activation of nuclear factor of activated T-cells 1 and are essential for ER refilling. The loss of both STIM proteins abrogates CRAC channel activity, drastically reduces ER Ca2+ content, severely hampers cell proliferation and enhances cell death. These results clarify the mechanism and the contribution of STIM proteins to Ca2+ oscillations in T-cells.


Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio , Señalización del Calcio , Humanos , Calcio/metabolismo , Canales de Calcio Activados por la Liberación de Calcio/genética , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Señalización del Calcio/genética , Células Jurkat , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 2/genética , Molécula de Interacción Estromal 2/metabolismo , Técnicas de Inactivación de Genes , Modelos Biológicos , Isoformas de Proteínas , Transporte de Proteínas/genética , Proliferación Celular/genética , Supervivencia Celular/genética
4.
Cell Calcium ; 108: 102673, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36410063

RESUMEN

Innate and acquired resistances to therapeutic agents are responsible for the failure of cancer treatments. Due to the multifactorial nature of resistance, the identification of new therapeutic targets is required to improve cancer treatment. Calcium is a universal second messenger that regulates many cellular functions such as proliferation, migration, and survival. Calcium channels, pumps and exchangers tightly regulate the duration, location and magnitude of calcium signals. Many studies have implicated dysregulation of calcium signaling in several pathologies, including cancer. Abnormal calcium fluxes due to altered channel expression or activation contribute to carcinogenesis and promote tumor development. However, there is limited information on the role of calcium signaling in cancer resistance to therapeutic drugs. This review discusses the role of calcium signaling as a mediator of cancer resistance, and assesses the potential value of combining anticancer therapy with calcium signaling modulators to improve the effectiveness of current treatments.


Asunto(s)
Señalización del Calcio , Neoplasias , Humanos , Calcio , Neoplasias/tratamiento farmacológico , Carcinogénesis , Canales de Calcio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...