Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharm Biol ; 59(1): 1378-1387, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34629029

RESUMEN

CONTEXT: Acetaminophen (APAP) overdose is the leading cause of drug-induced liver injury. Bianliang ziyu, a variety of Chrysanthemum morifolium Ramat. (Asteraceae), has potential hepatoprotective effect. However, the mechanism is not clear yet. OBJECTIVE: To investigate the hepatoprotective activity and mechanism of Bianliang ziyu flower ethanol extract (BZE) on APAP-induced rats based on network pharmacology. MATERIALS AND METHODS: Potential pathways of BZE were predicted by network pharmacology. Male Sprague-Dawley rats were pre-treated with BZE (110, 220 and 440 mg/kg, i.g.) for eight days, and then APAP (800 mg/kg, i.g.) was used to induce liver injury. After 24 h, serum and liver were collected for biochemical detection and western blot measurement. RESULTS: Network pharmacology indicated that liver-protective effect of BZE was associated with its antioxidant and anti-apoptotic efficacy. APAP-induced liver pathological change was alleviated, and elevated serum AST and ALT were reduced by BZE (440 mg/kg) (from 66.45 to 22.64 U/L and from 59.59 to 17.49 U/L, respectively). BZE (440 mg/kg) reduced the ROS to 65.50%, and upregulated SOD and GSH by 212.92% and 175.38%, respectively. In addition, BZE (440 mg/kg) increased levels of p-AMPK, p-GSK3ß, HO-1 and NQO1, ranging from 1.66- to 10.29-fold compared to APAP group, and promoted nuclear translocation of Nrf2. BZE also inhibited apoptosis induced by APAP through the PI3K-Akt pathway and restored the ability of mitochondrial biogenesis. DISCUSSION AND CONCLUSIONS: Our study demonstrated that BZE protected rats from APAP-induced liver injury through antioxidant and anti-apoptotic pathways, suggesting BZE could be further developed as a potential liver-protecting agent.


Asunto(s)
Acetaminofén/envenenamiento , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Chrysanthemum/química , Extractos Vegetales/farmacología , Animales , Antioxidantes/administración & dosificación , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Relación Dosis-Respuesta a Droga , Sobredosis de Droga , Flores , Masculino , Farmacología en Red , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Ratas , Ratas Sprague-Dawley
2.
Front Pharmacol ; 12: 632569, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33692694

RESUMEN

The effects of ginger on gastrointestinal disorders such as ulcerative colitis have been widely investigated using experimental models; however, the mechanisms underlying its therapeutic actions are still unknown. In this study, we investigated the correlation between the therapeutic effects of ginger and the regulation of the gut microbiota. We used dextran sulfate sodium (DSS) to induce colitis and found that ginger alleviated colitis-associated pathological changes and decreased the mRNA expression levels of interleukin-6 and inducible nitric oxide synthase in mice. 16s rRNA sequencing analysis of the feces samples showed that mice with colitis had an intestinal flora imbalance with lower species diversity and richness. At the phylum level, a higher abundance of pathogenic bacteria, Proteobacteria and firmicutes, were observed; at the genus level, most samples in the model group showed an increase in Lachnospiraceae_NK4A136_group. The overall analysis illustrated an increase in the relative abundance of Lactobacillus_murinus, Lachnospiraceae_bacterium_615, and Ruminiclostridium_sp._KB18. These increased pathogenic bacteria in model mice were decreased when treated with ginger. DSS-treated mice showed a lower abundance of Muribaculaceae, and ginger corrected this disorder. The bacterial community structure of the ginger group analyzed with Alpha and Beta indices was similar to that of the control group. The results also illustrated that altered intestinal microbiomes affected physiological functions and adjusted key metabolic pathways in mice. In conclusion, this research presented that ginger reduced DSS-induced colitis severity and positively regulated the intestinal microbiome. Based on the series of data in this study, we hypothesize that ginger can improve diseases by restoring the diversity and functions of the gut microbiota.

3.
Front Med (Lausanne) ; 7: 432, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32766268

RESUMEN

Background: Patients with severe novel coronavirus disease (COVID-19) can likely develop comorbidities, which can lead to irreversible organ damage and, eventually, death. However, early indicators of disease progression remain unclear. This study aimed to identify early indicators of disease progression to provide a basis for improved prognostic prediction and disease management. Methods: We examined 53 recovered adult COVID-19 patients who were treated at Shanghai Public Health Clinical Center between January 20, 2020, and February 20, 2020. The patients were categorized into the following four groups according to their condition at admission: mild condition (n = 3), moderate (n = 41), severe (n = 7), and critical (n = 2). They were also categorized according to disease progression as mild or moderate conditions that remained stable (n = 26), moderate disease that progressed to severe condition (n = 18), and continuously severe or critical (n = 9). We then focused on investigating the differences in the epidemiological and laboratory indicators between remained stable cases and progressed to severe condition cases. Results: Mild or moderate patients were younger than severe or critical patients. The number of patients with shortness of breath and underlying diabetes and heart disease at admission was higher in the severe or critical group. This group also showed considerably lower or higher values in 28 laboratory indicators. In addition, mild and moderate patients who remained stable were younger than moderate patients progressing to severe disease. Men had a higher risk of disease progression. Patients who progressed had either higher or lower values in 11 laboratory indicators. Survival curve analysis showed that age, procalcitonin, D-dimer, serum C-reactive protein, lactate dehydrogenase, lymphocytes, neutrophils, CD4%, and CD4/CD8 ratio were significant predictors of progression to severe disease. Conclusions: Lactate dehydrogenase, procalcitonin, etc. are early warning indicators of severe COVID-19. Age (>64 years), shortness of breath, past histories of diabetes and heart disease, and abnormality in 28 other indicators at admission are indicative of severe or progression toward severe COVID-19. Meanwhile, abnormalities in 11 indicators and an abnormal coagulation function index at admission are risk factors for progression to severe disease.

4.
J Pharmacol Toxicol Methods ; 104: 106887, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32535058

RESUMEN

INTRODUCTION: Primary mouse cardiomyocytes are essential tools for cardiovascular pharmacology research at the cellular and molecular levels, but their low viability and low purity have often caused challenges in previous studies. Hence, we developed an improved two-step method for extraction and purification of primary cardiomyocytes from neonatal mice. METHOD: This method consisted of two steps: 1) isolation and pre-digestion of heart tissues from 1- to 3-day-old C57 neonatal mice and 2) extraction and purification of cardiomyocytes. The traditional method of primary mouse cardiomyocyte isolation was used as the control group to assess the extraction efficiency of cardiomyocytes by the two-step method, and the purity and viability of cardiomyocytes were evaluated by immunofluorescence staining and autonomous beating analysis, respectively. RESULTS: Compared with the control method, the two-step method enabled acquisition of more cells from mouse hearts (1.28 ± 0.11 × 106vs 0.59 ± 0.15 × 106 cells/heart), and the resulting cells exhibited higher adherence rates and cell purity (93.25 ± 1.69% vs 73.62 ± 9.76%) after 48 h of culture. Moreover, the viability of cardiomyocytes was also evidently higher in the two-step group than in the control group (124.67 ± 10.50 vs 88.50 ± 6.61 beats/min). DISCUSSION: Compared with the traditional method, the two-step method exhibited significantly better efficiency in extraction of primary cardiomyocytes and yielded cells with greater purity and viability. The two-step method will likely become a standard method for studies based on primary mouse cardiomyocytes in the future.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Miocitos Cardíacos/citología , Animales , Animales Recién Nacidos , Supervivencia Celular/fisiología , Células Cultivadas , Femenino , Técnica del Anticuerpo Fluorescente , Masculino , Ratones , Ratones Endogámicos C57BL
5.
Food Nutr Res ; 632019.
Artículo en Inglés | MEDLINE | ID: mdl-31024225

RESUMEN

BACKGROUND: 'Bianliang ziyu', a famous chrysanthemum variety commonly planted in Kaifeng, China, is often consumed by local residents. However, the hepatoprotective effects of Bianliang ziyu and their underlying mechanisms are not clear. OBJECTIVE: In this study, we investigated the hepatoprotective and antioxidative effects of Bianliang ziyu extract (BZE) on liver injury and explored its molecular mechanisms. DESIGN: Sprague-Dawley rats were administered BZE by intragastric administration for 8-9 days, and then alcohol or carbon tetrachloride (CCl4) was administered by gavage to induce acute liver injury. The activities of serum alanine aminotransferase, aspartate aminotransferase, superoxide dismutase, and malondialdehyde in the rats were measured, and the liver of each rat was examined for histopathological changes. In vitro, HL-7702 cells were pretreated with BZE for 24 h and then exposed to 30 mmol•L-1 acetaminophen (APAP) for 12 h. The survival rate of the cells and the alanine aminotransferase and aspartate aminotransferase activities were determined. Then, we investigated the effects of BZE on oxidative stress, apoptosis, and the activation of nuclear factor erythroid-2-related factor 2 (Nrf2) signaling in HL-7702 cells induced by APAP. RESULTS: The results showed that BZE prevented alcohol-, CCl4-, and APAP-induced liver injury and suppressed hepatic oxidative stress in vitro and in vivo. BZE was also observed to significantly inhibit the reduction of mitochondrial membrane potential and regulate the expression of Bcl-2, Bax and Caspase-3 in APAP-induced HL-7702 cells. In addition, BZE significantly promoted nuclear translocation and the expression of Nrf2 as well as its downstream gene hemeoxygenase-1 (HO-1) in vitro. Furthermore, the findings showed that Nrf2 siRNA reversed the effects of BZE on cell survival and apoptosis-related protein expression in APAP-induced HL-7702 cells. CONCLUSIONS: BZE plays an important role in preventing hepatotoxicity by inhibiting oxidative stress and apoptosis through activation of Nrf2 signaling. BZE could be developed as an effective functional food for protecting the liver.

6.
Int Immunopharmacol ; 66: 309-316, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30502652

RESUMEN

Luteoloside, a flavonoid compound, has been reported to have anti-inflammatory, anti-oxidative, antibacterial, antiviral, anticancer, and cardioprotective effects, among others, but its neuroprotective effects have rarely been studied. The purpose of this study was to investigate the protective effect of luteoloside on cerebral ischemia and explore its potential mechanism. Middle cerebral artery occlusion (MCAO) was performed to investigate the effects of luteoloside on cerebral ischemia-reperfusion (I/R). Male Sprague-Dawley rats were randomly divided into six groups: sham, MCAO, luteoloside (20 mg/kg, 40 mg/kg, 80 mg/kg) and nimodipine (4 mg/kg). The results showed that luteoloside alleviated neurologic deficits and cerebral edema as well as improved cerebral infarction and histopathological changes in MCAO rats. Luteoloside significantly inhibited I/R-induced neuroinflammation, as demonstrated by reduced levels of interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the brain tissues of MCAO rats. Furthermore, our results demonstrated that luteoloside significantly suppressed the activation of nuclear factor-kappa B (NF-κB) signaling, upregulated the protein expression of peroxisome proliferator activated receptor gamma (PPARγ) and increased NF-E2-related factor (Nrf2) nuclear accumulation in MCAO rats. Collectively, our findings suggested that luteoloside played a crucial neuroprotective role by inhibiting NF-κB signaling in focal cerebral ischemia in rats. Furthermore, PPARγ and Nrf2 were also important for the anti-inflammatory effect of luteoloside. In addition, our data suggested that luteoloside might be an effective treatment for cerebral ischemia and other neurological disorders.


Asunto(s)
Antiinflamatorios/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Glucósidos/uso terapéutico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Luteolina/uso terapéutico , Inflamación Neurogénica/tratamiento farmacológico , Animales , Células Cultivadas , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Humanos , Interleucina-1beta/metabolismo , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , PPAR gamma/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...