Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 137: 112366, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38852526

RESUMEN

AIMS: Endometriosis is characterized by an abnormal immune microenvironment. Despite the extensive use of immune therapies, the application of immune checkpoint inhibitors in endometriosis lacks confidence due to the instability of preclinical research data. This study aims to elucidate the regulation of the immune inhibitory checkpoint VISTA and its effects on T cells from the perspective of microbiota and metabolism. MAIN METHODS: We divided endometriosis patients into high and low groups based on the expression levels of VISTA in lesion tissues. We collected peritoneal fluid samples from these two groups and performed 16 s RNA sequencing and metabolomics analysis to investigate microbial diversity and differential metabolites. Through combined analysis, we identified microbial-associated metabolites and validated their correlation with VISTA and CD8 + T cells using ELISA and immunofluorescence. In vitro experiments were conducted to confirm the regulatory relationship among these factors. KEY FINDINGS: Our findings revealed a distinct correlation between VISTA expression and the microbial colony Escherichia.Shigella. Moreover, we identified the metabolites LTD4-d5 and 2-n-Propylthiazolidine-4-carboxylic acid as being associated with both Escherichia.Shigella and VISTA expression. In vitro experiments confirmed the inhibitory effects of these metabolites on VISTA expression, while they demonstrated a positive regulation of CD8 + T cell infiltration into endometriotic lesions. SIGNIFICANCE: This study reveals the connection between microbial diversity, metabolites, and VISTA expression in the immune microenvironment of endometriosis, providing potential targets for therapeutic interventions.


Asunto(s)
Linfocitos T CD8-positivos , Endometriosis , Inmunomodulación , Endometriosis/inmunología , Endometriosis/metabolismo , Femenino , Humanos , Adulto , Linfocitos T CD8-positivos/inmunología , Antígenos B7/metabolismo , Antígenos B7/genética , Líquido Ascítico/inmunología , Líquido Ascítico/metabolismo , Líquido Ascítico/microbiología
2.
Metabolomics ; 20(2): 32, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424274

RESUMEN

INTRODUCTION: The microbial community plays a crucial role in the pathological microenvironment. However, the structure of the microbial community within endometriotic lesions and its impact on the microenvironment is still limited. METHODS: All 55 tissue samples, including ovarian ectopic (OEMs) and normal (NE) endometrium, were subjected to 16S rRNA sequencing, metabolomic and proteomic analysis. RESULTS: We found the abundance of Tuzzerella is significantly lower in OEMs compared to NE tissue (p < 0.01). We selected samples from these two groups that exhibited the most pronounced difference in Tuzzerella abundance for further metabolomic and proteomic analysis. Our findings indicated that endometriotic lesions were associated with a decrease in L-Glutamine levels. However, proteomic analysis revealed a significant upregulation of proteins related to the complement pathway, including C3, C7, C1S, CLU, and A2M. Subsequent metabolic and protein correlation predictions demonstrated a negative regulation between L-Glutamine and C7. In vitro experiments further confirmed that high concentrations of Glutamine significantly inhibit C7 protein expression. Additionally, immune cell infiltration analysis, multiplex immunofluorescence, and multifactorial testing demonstrated a positive correlation between C7 expression and the infiltration of regulatory T cells (Tregs) in ectopic lesions, while L-Glutamine was found to negatively regulate the expression of chemotactic factors for Tregs. CONCLUSION: In this study, we found a clear multi-omics pathway alteration, "Tuzzerella (microbe)-L-Glutamine (metabolite)-C7 (protein)," which affects the infiltration of Tregs in endometriotic lesions. Our findings provide insights into endometriosis classification and personalized treatment strategies based on microbial structures.


Asunto(s)
Endometriosis , Femenino , Humanos , Endometriosis/metabolismo , Glutamina , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/patología , Multiómica , Proteómica , ARN Ribosómico 16S/metabolismo , Metabolómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...