Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Struct Biol ; 216(1): 108060, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38184156

RESUMEN

Copalyl diphosphate synthase from Penicillium fellutanum (PfCPS) is an assembly-line terpene synthase that contains both prenyltransferase and class II cyclase activities. The prenyltransferase catalyzes processive chain elongation reactions using dimethylallyl diphosphate and three equivalents of isopentenyl diphosphate to yield geranylgeranyl diphosphate, which is then utilized as a substrate by the class II cyclase domain to generate copalyl diphosphate. Here, we report the 2.81 Å-resolution cryo-EM structure of the hexameric prenyltransferase of full-length PfCPS, which is surrounded by randomly splayed-out class II cyclase domains connected by disordered polypeptide linkers. The hexamer can be described as a trimer of dimers; surprisingly, one of the three dimer-dimer interfaces is separated to yield an open hexamer conformation, thus breaking the D3 symmetry typically observed in crystal structures of other prenyltransferase hexamers such as wild-type human GGPP synthase (hGGPPS). Interestingly, however, an open hexamer conformation was previously observed in the crystal structure of D188Y hGGPPS, apparently facilitated by hexamer-hexamer packing in the crystal lattice. The cryo-EM structure of the PfCPS prenyltransferase hexamer is the first to reveal that an open conformation can be achieved even in the absence of a point mutation or interaction with another hexamer. Even though PfCPS octamers are not detected, we suggest that the open hexamer conformation represents an intermediate in the hexamer-octamer equilibrium for those prenyltransferases that do exhibit oligomeric heterogeneity.


Asunto(s)
Transferasas Alquil y Aril , Dimetilaliltranstransferasa , Penicillium , Humanos , Dimetilaliltranstransferasa/genética , Penicillium/genética , Proteínas de Plantas/genética
2.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36430446

RESUMEN

Lysyl oxidase-2 (LOXL2) is a Cu2+ and lysine tyrosylquinone (LTQ)-dependent amine oxidase that catalyzes the oxidative deamination of peptidyl lysine and hydroxylysine residues to promote crosslinking of extracellular matrix proteins. LTQ is post-translationally derived from Lys653 and Tyr689, but its biogenesis mechanism remains still elusive. A 2.4 Å Zn2+-bound precursor structure lacking LTQ (PDB:5ZE3) has become available, where Lys653 and Tyr689 are 16.6 Å apart, thus a substantial conformational rearrangement is expected to take place for LTQ biogenesis. However, we have recently shown that the overall structures of the precursor (no LTQ) and the mature (LTQ-containing) LOXL2s are very similar and disulfide bonds are conserved. In this study, we aim to gain insights into the spatial arrangement of LTQ and the active site Cu2+ in the mature LOXL2 using a recombinant LOXL2 that is inhibited by 2-hydrazinopyridine (2HP). Comparative UV-vis and resonance Raman spectroscopic studies of the 2HP-inhibited LOXL2 and the corresponding model compounds and an EPR study of the latter support that 2HP-modified LTQ serves as a tridentate ligand to the active site Cu2. We propose that LTQ resides within 2.9 Å of the active site of Cu2+ in the mature LOXL2, and both LTQ and Cu2+ are solvent-exposed.


Asunto(s)
Lisina , Proteína-Lisina 6-Oxidasa , Lisina/metabolismo , Proteína-Lisina 6-Oxidasa/metabolismo , Dominio Catalítico , Quinonas/química
3.
Biochemistry ; 61(18): 2025-2035, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36084241

RESUMEN

The regiospecific prenylation of an aromatic amino acid catalyzed by a dimethylallyl-l-tryptophan synthase (DMATS) is a key step in the biosynthesis of many fungal and bacterial natural products. DMATS enzymes share a common "ABBA" fold with divergent active site contours that direct alternative C-C, C-N, and C-O bond-forming trajectories. DMATS1 from Fusarium fujikuroi catalyzes the reverse N-prenylation of l-Trp by generating an allylic carbocation from dimethylallyl diphosphate (DMAPP) that then alkylates the indole nitrogen of l-Trp. DMATS1 stands out among the greater DMATS family because it exhibits unusually broad substrate specificity: it can utilize geranyl diphosphate (GPP) or l-Tyr as an alternative prenyl donor or acceptor, respectively; it can catalyze both forward and reverse prenylation, i.e., at C1 or C3 of DMAPP; and it can catalyze C-N and C-O bond-forming reactions. Here, we report the crystal structures of DMATS1 and its complexes with l-Trp or l-Tyr and unreactive thiolodiphosphate analogues of the prenyl donors DMAPP and GPP. Structures of ternary complexes mimic Michaelis complexes with actual substrates and illuminate active site features that govern prenylation regiochemistry. Comparison with CymD, a bacterial enzyme that catalyzes the reverse N-prenylation of l-Trp with DMAPP, indicates that bacterial and fungal DMATS enzymes share a conserved reaction mechanism. However, the narrower active site contour of CymD enforces narrower substrate specificity. Structure-function relationships established for DMATS enzymes will ultimately inform protein engineering experiments that will broaden the utility of these enzymes as useful tools for synthetic biology.


Asunto(s)
Productos Biológicos , Dimetilaliltranstransferasa , Triptófano Sintasa , Catálisis , Dimetilaliltranstransferasa/química , Fusarium , Hemiterpenos , Indoles , Neopreno , Nitrógeno , Compuestos Organofosforados , Prenilación , Especificidad por Sustrato , Triptófano/química , Triptófano Sintasa/metabolismo
4.
J Biol Inorg Chem ; 27(6): 541-551, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35513576

RESUMEN

Pseudomonas aeruginosa is an increasingly antibiotic-resistant pathogen that causes severe lung infections, burn wound infections, and diabetic foot infections. P. aeruginosa produces the siderophore pyochelin through the use of a non-ribosomal peptide synthetase (NRPS) biosynthetic pathway. Targeting members of siderophore NRPS proteins is one avenue currently under investigation for the development of new antibiotics against antibiotic-resistant organisms. Here, the crystal structure of the pyochelin adenylation domain PchD is reported. The structure was solved to 2.11 Å when co-crystallized with the adenylation inhibitor 5'-O-(N-salicylsulfamoyl)adenosine (salicyl-AMS) and to 1.69 Å with a modified version of salicyl-AMS designed to target an active site cysteine (4-cyano-salicyl-AMS). In the structures, PchD adopts the adenylation conformation, similar to that reported for AB3403 from Acinetobacter baumannii.


Asunto(s)
Pseudomonas aeruginosa , Sideróforos , Antibacterianos/metabolismo , Antibacterianos/farmacología , Fenoles , Pseudomonas aeruginosa/metabolismo , Salicilatos/metabolismo , Sideróforos/química , Tiazoles
5.
Biochemistry ; 60(42): 3162-3172, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34609847

RESUMEN

Copalyl diphosphate (CPP) synthase from Penicillium verruculosum (PvCPS) is a bifunctional diterpene synthase with both prenyltransferase and class II cyclase activities. The prenyltransferase α domain catalyzes the condensation of C5 dimethylallyl diphosphate with three successively added C5 isopentenyl diphosphates (IPPs) to form C20 geranylgeranyl diphosphate (GGPP), which then undergoes a class II cyclization reaction at the ßγ domain interface to generate CPP. The prenyltransferase α domain mediates oligomerization to form a 648-kD (αßγ)6 hexamer. In the current study, we explore prenyltransferase structure-function relationships in this oligomeric assembly-line platform with the goal of generating alternative linear isoprenoid products. Specifically, we report steady-state enzyme kinetics, product analysis, and crystal structures of various site-specific variants of the prenyltransferase α domain. Crystal structures of the H786A, F760A, S723Y, S723F, and S723T variants have been determined at resolutions of 2.80, 3.10, 3.15, 2.65, and 2.00 Å, respectively. The substitution of S723 with bulky aromatic amino acids in the S723Y and S723F variants constricts the active site, thereby directing the formation of the shorter C15 isoprenoid, farnesyl diphosphate. While the S723T substitution only subtly alters enzyme kinetics and does not compromise GGPP biosynthesis, the crystal structure of this variant reveals a nonproductive binding mode for IPP that likely accounts for substrate inhibition at high concentrations. Finally, mutagenesis of the catalytic general acid in the class II cyclase domain, D313A, significantly compromises prenyltransferase activity. This result suggests molecular communication between the prenyltransferase and cyclase domains despite their distant connection by a flexible polypeptide linker.


Asunto(s)
Transferasas Alquil y Aril/química , Enzimas Multifuncionales/química , Proteínas de Plantas/química , Transferasas Alquil y Aril/genética , Dominio Catalítico/genética , Cinética , Enzimas Multifuncionales/genética , Proteínas de Plantas/genética , Dominios Proteicos/genética , Ingeniería de Proteínas , Talaromyces/enzimología
6.
Acc Chem Res ; 54(20): 3780-3791, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34254507

RESUMEN

The magnificent chemodiversity of more than 95 000 terpenoid natural products identified to date largely originates from catalysis by two types of terpene synthases, prenyltransferases and cyclases. Prenyltransferases utilize 5-carbon building blocks in processive chain elongation reactions to generate linear C5n isoprenoid diphosphates (n ≥ 2), which in turn serve as substrates for terpene cyclases that convert these linear precursors into structurally complex hydrocarbon products containing multiple rings and stereocenters. Terpene cyclization reactions are the most complex organic transformations found in nature in that more than half of the substrate carbon atoms undergo changes in chemical bonding during a multistep reaction sequence proceeding through several carbocation intermediates. Two general classes of cyclases are established on the basis of the chemistry of initial carbocation formation, and structural studies from our laboratory and others show that three fundamental protein folds designated α, ß, and γ govern this chemistry. Catalysis by a class I cyclase occurs in an α domain, where a trinuclear metal cluster activates the substrate diphosphate leaving group to generate an allylic cation. Catalysis by a class II cyclase occurs in a ß domain or at the interface of ß and γ domains, where an aspartic acid protonates the terminal π bond of the substrate to yield a tertiary carbocation. Crystal structures reveal domain architectures of α, αß, αßγ, ßγ, and ß.In some terpene synthases, these domains are combined to yield bifunctional enzymes that catalyze successive biosynthetic steps in assembly line fashion. Structurally characterized examples include bacterial geosmin synthase, an αα domain enzyme that catalyzes a class I cyclization reaction of C15 farnesyl diphosphate in one active site and a transannulation-fragmentation reaction in the other to yield C12 geosmin and C3 acetone products. In comparison, plant abietadiene synthase is an αßγ domain enzyme in which C20 geranylgeranyl diphosphate undergoes tandem class II-class I cyclization reactions to yield the tricyclic product. Recent structural studies from our laboratory show that bifunctional fungal cyclases form oligomeric complexes for assembly line catalysis. Bifunctional (+)-copalyl diphosphate synthase adopts (αßγ)6 architecture in which the α domain generates geranylgeranyl diphosphate, which then undergoes class II cyclization in the ßγ domains to yield the bicyclic product. Bifunctional fusicoccadiene synthase adopts (αα)6 or (αα)8 architecture in which one α domain generates geranylgeranyl diphosphate, which then undergoes class I cyclization in the other α domain to yield the tricyclic product. The prenyltransferase α domain mediates oligomerization in these systems. Attached by flexible polypeptide linkers, cyclase domains splay out from oligomeric prenyltransferase cores.In this Account, we review structure-function relationships for these bifunctional terpene synthases, with a focus on the oligomeric systems studied in our laboratory. The observation of substrate channeling for fusicoccadiene synthase suggests a model for dynamic cluster channeling in catalysis by oligomeric assembly line terpenoid synthases. Resulting efficiencies in carbon management suggest that such systems could be particularly attractive for use in synthetic biology approaches to generate high-value terpenoid natural products.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/química , Biocatálisis , Humanos , Modelos Moleculares
7.
Biochemistry ; 59(50): 4744-4754, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33270439

RESUMEN

The sesquiterpene cyclase epi-isozizaene synthase (EIZS) catalyzes the cyclization of farnesyl diphosphate to form the tricyclic precursor of the antibiotic albaflavenone. The hydrophobic active site is largely defined by aromatic residues that direct a multistep reaction sequence through multiple carbocation intermediates. The previous substitution of polar residues for a key aromatic residue, F96, converts EIZS into a high-fidelity sesquisabinene synthase: the F96S, F96M, and F96Q variants generate 78%, 91%, and 97% sesquisabinene A, respectively. Here, we report high-resolution X-ray crystal structures of two of these reprogrammed cyclases. The structures of the F96M EIZS-Mg2+3-risedronate and F96M EIZS-Mg2+3-inorganic pyrophosphate-benzyltriethylammonium cation complexes reveal structural changes in the F96 aromatic cluster that redirect the cyclization pathway leading from the bisabolyl carbocation intermediate in catalysis. The structure of the F96S EIZS-Mg2+3-neridronate complex reveals a partially occupied inhibitor and an enzyme active site caught in transition between open and closed states. Finally, three structures of wild-type EIZS complexed with the bisphosphonate inhibitors neridronate, pamidronate, and risedronate provide a foundation for understanding binding differences between wild-type and variant enzymes. These structures provide new insight regarding active site flexibility, particularly with regard to the potential for subtle expansion and contraction to accommodate ligands of varying sizes as well as bound water molecules. Additionally, these structures highlight the importance of conformational changes in the F96 aromatic cluster that could influence cation-π interactions with carbocation intermediates in catalysis.


Asunto(s)
Liasas de Carbono-Carbono/química , Liasas de Carbono-Carbono/metabolismo , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Liasas de Carbono-Carbono/genética , Dominio Catalítico , Cristalografía por Rayos X , Ciclización , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Electricidad Estática , Estereoisomerismo , Streptomyces coelicolor/enzimología , Streptomyces coelicolor/genética , Especificidad por Sustrato , Terpenos/química , Terpenos/metabolismo , Agua/química
8.
J Struct Biol ; 210(1): 107463, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31978464

RESUMEN

The unusual diterpene (C20) synthase copalyl diphosphate synthase from Penicillium verruculosum (PvCPS) is the first bifunctional terpene synthase identified with both prenyltransferase and class II cyclase activities in a single polypeptide chain with αßγ domain architecture. The C-terminal prenyltransferase α domain generates geranylgeranyl diphosphate which is then cyclized to form copalyl diphosphate at the N-terminal ßγ domain interface. We now demonstrate that PvCPS exists as a hexamer at high concentrations - a unique quaternary structure for known αßγ terpene synthases. Hexamer assembly is corroborated by a 2.41 Å-resolution crystal structure of the α domain prenyltransferase obtained from limited proteolysis of full-length PvCPS, as well as the ab initio model of full-length PvCPS derived from small-angle X-ray scattering data. Hexamerization of the prenyltransferase α domain appears to drive the hexamerization of full-length PvCPS. The PvCPS hexamer dissociates into lower-order species at lower concentrations, as evidenced by size-exclusion chromatography in-line with multiangle light scattering, sedimentation velocity analytical ultracentrifugation, and native polyacrylamide gel electrophoresis experiments, suggesting that oligomerization is concentration dependent. Even so, PvCPS oligomer assembly does not affect prenyltransferase activity in vitro.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Terpenos/metabolismo , Transferasas Alquil y Aril/genética , Dimetilaliltranstransferasa/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Talaromyces/metabolismo
9.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 6): 461-469, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31204694

RESUMEN

Human liver pyruvate kinase (hLPYK) converts phosphoenolpyruvate to pyruvate in the final step of glycolysis. hLPYK is allosterically activated by fructose-1,6-bisphosphate (Fru-1,6-BP). The allosteric site, as defined by previous structural studies, is located in domain C between the phosphate-binding loop (residues 444-449) and the allosteric loop (residues 527-533). In this study, the X-ray crystal structures of four hLPYK variants were solved to make structural correlations with existing functional data. The variants are D499N, W527H, Δ529/S531G (called GGG here) and S531E. The results revealed a conformational toggle between the open and closed positions of the allosteric loop. In the absence of Fru-1,6-BP the open position is stabilized, in part, by a cation-π bond between Trp527 and Arg538' (from an adjacent monomer). In the S531E variant glutamate binds in place of the 6'-phosphate of Fru-1,6-BP in the allosteric site, leading to partial allosteric activation. Finally, the structure of the D499N mutant does not provide structural evidence for the previously observed allosteric activation of the D499N variant.


Asunto(s)
Cationes/química , Fructosadifosfatos/metabolismo , Hígado/enzimología , Mutación , Piruvato Quinasa/química , Piruvato Quinasa/metabolismo , Sitio Alostérico , Sitios de Unión , Cristalografía por Rayos X , Fructosadifosfatos/química , Humanos , Modelos Moleculares , Conformación Proteica , Subunidades de Proteína , Piruvato Quinasa/genética
10.
Biochemistry ; 58(6): 665-678, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30525512

RESUMEN

Nonribosomal peptide synthetases use tailoring domains to incorporate chemical diversity into the final natural product. A structurally unique set of tailoring domains are found to be stuffed within adenylation domains and have only recently begun to be characterized. PchF is the NRPS termination module in pyochelin biosynthesis and includes a stuffed methyltransferase domain responsible for S-adenosylmethionine (AdoMet)-dependent N-methylation. Recent studies of stuffed methyltransferase domains propose a model in which methylation occurs on amino acids after adenylation and thiolation rather than after condensation to the nascent peptide chain. Herein, we characterize the adenylation and stuffed methyltransferase didomain of PchF through the synthesis and use of substrate analogues, steady-state kinetics, and onium chalcogen effects. We provide evidence that methylation occurs through an SN2 reaction after thiolation, condensation, cyclization, and reduction of the module substrate cysteine and is the penultimate step in pyochelin biosynthesis.


Asunto(s)
Proteínas Bacterianas/química , Metiltransferasas/química , Péptido Sintasas/química , Fenoles/química , Tiazoles/química , Proteínas Bacterianas/aislamiento & purificación , Catálisis , Catecol O-Metiltransferasa/química , Escherichia coli/genética , Cinética , Methanocaldococcus/enzimología , Metionina Adenosiltransferasa/química , Metionina Adenosiltransferasa/aislamiento & purificación , Metilación , Metiltransferasas/aislamiento & purificación , Péptido Sintasas/aislamiento & purificación , Fenoles/síntesis química , Dominios Proteicos , Pseudomonas aeruginosa/enzimología , S-Adenosilmetionina/análogos & derivados , Tiazoles/síntesis química
11.
Curr Opin Struct Biol ; 53: 1-11, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29455106

RESUMEN

Microbes synthesize small, iron-chelating molecules known as siderophores to acquire iron from the environment. One way siderophores are generated is by nonribosomal peptide synthetases (NRPSs). The bioactive peptides generated by NRPS enzymes have unique chemical features, which are incorporated by accessory and tailoring domains or proteins. The first part of this review summarizes recent progress in NRPS structural biology. The second part uses the biosynthesis of pyochelin, a siderophore from Pseudomonas aeruginosa, as a case study to examine enzymatic methods for generating the observed diversity in NRPS-derived natural products.


Asunto(s)
Proteínas Bacterianas/metabolismo , Péptido Sintasas , Fenoles/metabolismo , Pseudomonas aeruginosa , Tiazoles/metabolismo , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos , Péptido Sintasas/química , Péptido Sintasas/metabolismo , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/metabolismo
12.
Biochemistry ; 55(38): 5423-33, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27601130

RESUMEN

Thiazolinyl imine reductases catalyze the NADPH-dependent reduction of a thiazoline to a thiazolidine, a required step in the formation of the siderophores yersiniabactin (Yersinia spp.) and pyochelin (Pseudomonas aeruginosa). These stand-alone nonribosomal peptide tailoring domains are structural homologues of sugar oxidoreductases. Two closed structures of the thiazolinyl imine reductase from Yersinia enterocolitica (Irp3) are presented here: an NADP(+)-bound structure to 1.45 Å resolution and a holo structure to 1.28 Å resolution with NADP(+) and a substrate analogue bound. Michaelis-Menten kinetics were measured using the same substrate analogue and the homologue from P. aeruginosa, PchG. The data presented here support the hypothesis that tyrosine 128 is the likely general acid residue for catalysis and also highlight the phosphopantetheine tunnel for tethering of the substrate to the nonribosomal peptide synthetase module during assembly line biosynthesis of the siderophore.


Asunto(s)
Oxidorreductasas/metabolismo , Sideróforos/biosíntesis , Cristalografía por Rayos X , Cinética , Espectrometría de Masas , Resonancia Magnética Nuclear Biomolecular , Oxidorreductasas/química , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...