Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 17948, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864007

RESUMEN

Deciphering the non-trivial interactions and mechanisms driving the evolution of time-varying complex networks (TVCNs) plays a crucial role in designing optimal control strategies for such networks or enhancing their causal predictive capabilities. In this paper, we advance the science of TVCNs by providing a mathematical framework through which we can gauge how local changes within a complex weighted network affect its global properties. More precisely, we focus on unraveling unknown geometric properties of a network and determine its implications on detecting phase transitions within the dynamics of a TVCN. In this vein, we aim at elaborating a novel and unified approach that can be used to depict the relationship between local interactions in a complex network and its global kinetics. We propose a geometric-inspired framework to characterize the network's state and detect a phase transition between different states, to infer the TVCN's dynamics. A phase of a TVCN is determined by its Forman-Ricci curvature property. Numerical experiments show the usefulness of the proposed curvature formalism to detect the transition between phases within artificially generated networks. Furthermore, we demonstrate the effectiveness of the proposed framework in identifying the phase transition phenomena governing the training and learning processes of artificial neural networks. Moreover, we exploit this approach to investigate the phase transition phenomena in cellular re-programming by interpreting the dynamics of Hi-C matrices as TVCNs and observing singularity trends in the curvature network entropy. Finally, we demonstrate that this curvature formalism can detect a political change. Specifically, our framework can be applied to the US Senate data to detect a political change in the United States of America after the 1994 election, as discussed by political scientists.

2.
iScience ; 25(9): 104846, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36043052

RESUMEN

WAPL, cohesin's DNA release factor, regulates three-dimensional (3D) chromatin architecture. The 3D chromatin structure and its relevance to mature T cell functions is not well understood. We show that in vivo lymphopenic expansion, and alloantigen-driven proliferation, alters the 3D structure and function of the genome in mature T cells. Conditional deletion of WAPL, cohesin's DNA release factor, in T cells reduced long-range genomic interactions and altered chromatin A/B compartments and interactions within topologically associating domains (TADs) of the chromatin in T cells at baseline. WAPL deficiency in T cells reduced loop extensions, changed expression of cell cycling genes and reduced proliferation following in vitro and in vivo stimulation, and reduced severity of graft-versus-host disease (GVHD) following experimental allogeneic hematopoietic stem cell transplantation. These data collectively characterize 3D genomic architecture of T cells in vivo and demonstrate biological and clinical implications for its disruption by cohesin release factor WAPL.

3.
JCI Insight ; 7(3)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-34990410

RESUMEN

Increased adipose tissue macrophages (ATMs) correlate with metabolic dysfunction in humans and are causal in development of insulin resistance in mice. Recent bulk and single-cell transcriptomics studies reveal a wide spectrum of gene expression signatures possible for macrophages that depends on context, but the signatures of human ATM subtypes are not well defined in obesity and diabetes. We profiled 3 prominent ATM subtypes from human adipose tissue in obesity and determined their relationship to type 2 diabetes. Visceral adipose tissue (VAT) and s.c. adipose tissue (SAT) samples were collected from diabetic and nondiabetic obese participants to evaluate cellular content and gene expression. VAT CD206+CD11c- ATMs were increased in diabetic participants, were scavenger receptor-rich with low intracellular lipids, secreted proinflammatory cytokines, and diverged significantly from 2 CD11c+ ATM subtypes, which were lipid-laden, were lipid antigen presenting, and overlapped with monocyte signatures. Furthermore, diabetic VAT was enriched for CD206+CD11c- ATM and inflammatory signatures, scavenger receptors, and MHC II antigen presentation genes. VAT immunostaining found CD206+CD11c- ATMs concentrated in vascularized lymphoid clusters adjacent to CD206-CD11c+ ATMs, while CD206+CD11c+ were distributed between adipocytes. Our results show ATM subtype-specific profiles that uniquely contribute to the phenotypic variation in obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/genética , Regulación de la Expresión Génica , Resistencia a la Insulina/genética , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Obesidad/genética , Receptores Inmunológicos/genética , Adipocitos/metabolismo , Tejido Adiposo/patología , Adulto , Anciano , Anciano de 80 o más Años , ADN/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Femenino , Estudios de Seguimiento , Humanos , Macrófagos/patología , Masculino , Glicoproteínas de Membrana/biosíntesis , Persona de Mediana Edad , Obesidad/metabolismo , Obesidad/patología , Receptores Inmunológicos/biosíntesis , Factores de Tiempo , Adulto Joven
4.
iScience ; 24(12): 103452, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34877507

RESUMEN

Every human somatic cell inherits a maternal and a paternal genome, which work together to give rise to cellular phenotypes. However, the allele-specific relationship between gene expression and genome structure through the cell cycle is largely unknown. By integrating haplotype-resolved genome-wide chromosome conformation capture, mature and nascent mRNA, and protein binding data from a B lymphoblastoid cell line, we investigate this relationship both globally and locally. We introduce the maternal and paternal 4D Nucleome, enabling detailed analysis of the mechanisms and dynamics of genome structure and gene function for diploid organisms. Our analyses find significant coordination between allelic expression biases and local genome conformation, and notably absent expression bias in universally essential cell cycle and glycolysis genes. We propose a model in which coordinated biallelic expression reflects prioritized preservation of essential gene sets.

5.
Nucleus ; 12(1): 58-64, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33794739

RESUMEN

Data on genome organization and output over time, or the 4D Nucleome (4DN), require synthesis for meaningful interpretation. Development of tools for the efficient integration of these data is needed, especially for the time dimension. We present the '4DNvestigator', a user-friendly network-based toolbox for the analysis of time series genome-wide genome structure (Hi-C) and gene expression (RNA-seq) data. Additionally, we provide methods to quantify network entropy, tensor entropy, and statistically significant changes in time series Hi-C data at different genomic scales.


Asunto(s)
Análisis de Datos , Genómica , Factores de Tiempo
6.
Neoplasia ; 23(2): 257-269, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33422939

RESUMEN

Canonical Wnt signaling is crucial for intestinal homeostasis as TCF4, the major Wnt signaling effector in the intestines, is required for stem cell maintenance. The capability of TCF4 to maintain the stem cell phenotype is contingent upon ß-catenin, a potent transcriptional activator, which interacts with histone acetyltransferases and chromatin remodeling complexes. We used RNAi to explore the influence of TCF4 on chromatin structure (Hi-C) and gene expression (RNA sequencing) across a 72-hour time series in colon cancer. We found that TCF4 reduction results in a disproportionate up-regulation of gene expression, including a powerful induction of SOX2. Integration of RNA sequencing and Hi-C data revealed a TAD boundary loss, which occurred concomitantly with the over-expression of a cluster of CEACAM genes on chromosome 19. We identified EMT and E2F as the 2 most deregulated pathways upon TCF4 depletion and LUM, TMPO, and AURKA as highly influential genes in these networks using measures of centrality. Results from gene expression, chromatin structure, and centrality analyses were integrated to generate a list of candidate transcription factors crucial for colon cancer cell homeostasis. The top ranked factor was c-JUN, an oncoprotein known to interact with TCF4 and ß-catenin, confirming the usefulness of this approach.


Asunto(s)
Regulación de la Expresión Génica , Silenciador del Gen , Proteína 2 Similar al Factor de Transcripción 7/genética , Regiones no Traducidas 3' , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina , Neoplasias del Colon/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica , Humanos , Familia de Multigenes , Interferencia de ARN , ARN Interferente Pequeño/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vía de Señalización Wnt
7.
Neoplasia ; 21(4): 401-412, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30909073

RESUMEN

Chromosomal aneuploidy is a defining feature of carcinomas and results in tumor-entity specific genomic imbalances. For instance, most sporadic colorectal carcinomas carry extra copies of chromosome 7, an aneuploidy that emerges already in premalignant adenomas, and is maintained throughout tumor progression and in derived cell lines. A comprehensive understanding on how chromosomal aneuploidy affects nuclear organization and gene expression, i.e., the nucleome, remains elusive. We now analyzed a cell line established from healthy colon mucosa with a normal karyotype (46,XY) and its isogenic derived cell line that acquired an extra copy of chromosome 7 as its sole anomaly (47,XY,+7). We studied structure/function relationships consequent to aneuploidization using genome-wide chromosome conformation capture (Hi-C), RNA sequencing and protein profiling. The gain of chromosome 7 resulted in an increase of transcript levels of resident genes as well as genome-wide gene and protein expression changes. The Hi-C analysis showed that the extra copy of chromosome 7 is reflected in more interchromosomal contacts between the triploid chromosomes. Chromatin organization changes are observed genome-wide, as determined by changes in A/B compartmentalization and topologically associating domain (TAD) boundaries. Most notably, chromosome 4 shows a profound loss of chromatin organization, and chromosome 14 contains a large A/B compartment switch region, concurrent with resident gene expression changes. No changes to the nuclear position of the additional chromosome 7 territory were observed when measuring distances of chromosome painting probes by interphase FISH. Genome and protein data showed enrichment in signaling pathways crucial for malignant transformation, such as the HGF/MET-axis. We conclude that a specific chromosomal aneuploidy has profound impact on nuclear structure and function, both locally and genome-wide. Our study provides a benchmark for the analysis of cancer nucleomes with complex karyotypes.


Asunto(s)
Aneuploidia , Núcleo Celular/genética , Expresión Génica , Estudio de Asociación del Genoma Completo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Transformación Celular Neoplásica , Aberraciones Cromosómicas , Mapeo Cromosómico , Regulación Neoplásica de la Expresión Génica , Genómica/métodos , Humanos , Hibridación Fluorescente in Situ
8.
Cancer Res ; 79(8): 2042-2053, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30808673

RESUMEN

For most cancers, metastasis is the point at which clinical treatment shifts from curative intent to extending survival. Biomaterial implants acting as a synthetic premetastatic niche recruit metastatic cancer cells and provide a survival advantage, and their use as a diagnostic platform requires assessing their relevance to disease progression. Here, we showed that scaffold-captured tumor cells (SCAF) were 30 times more metastatic to the lung than primary tumor (PT) cells, similar to cells derived from lung micrometastases (LUNG). SCAF cells were more aggressive in vitro, demonstrated higher levels of migration, invasion, and mammosphere formation, and had a greater proportion of cancer stem cells than PT. SCAF cells were highly enriched for gene expression signatures associated with metastasis and had associated genomic structural changes, including globally enhanced entropy. Collectively, our findings demonstrate that SCAF cells are distinct from PT and more closely resemble LUNG, indicating that tumor cells retrieved from scaffolds are reflective of cells at metastatic sites. SIGNIFICANCE: These findings suggest that metastatic tumor cells captured by a biomaterial scaffold may serve as a diagnostic for molecular staging of metastasis.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/8/2042/F1.large.jpg.


Asunto(s)
Materiales Biocompatibles/química , Neoplasias de la Mama/patología , Neoplasias Pulmonares/secundario , Células Madre Neoplásicas/patología , Andamios del Tejido/química , Animales , Apoptosis , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/metabolismo , Transcriptoma , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
iScience ; 6: 232-246, 2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-30240614

RESUMEN

Genome architecture has emerged as a critical element of transcriptional regulation, although its role in the control of cell identity is not well understood. Here we use transcription factor (TF)-mediated reprogramming to examine the interplay between genome architecture and transcriptional programs that transition cells into the myogenic identity. We recently developed new methods for evaluating the topological features of genome architecture based on network centrality. Through integrated analysis of these features of genome architecture and transcriptome dynamics during myogenic reprogramming of human fibroblasts we find that significant architectural reorganization precedes activation of a myogenic transcriptional program. This interplay sets the stage for a critical transition observed at several genomic scales reflecting definitive adoption of the myogenic phenotype. Subsequently, TFs within the myogenic transcriptional program participate in entrainment of biological rhythms. These findings reveal a role for topological features of genome architecture in the initiation of transcriptional programs during TF-mediated human cellular reprogramming.

10.
Proc Natl Acad Sci U S A ; 114(45): 11832-11837, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29078370

RESUMEN

The day we understand the time evolution of subcellular events at a level of detail comparable to physical systems governed by Newton's laws of motion seems far away. Even so, quantitative approaches to cellular dynamics add to our understanding of cell biology. With data-guided frameworks we can develop better predictions about, and methods for, control over specific biological processes and system-wide cell behavior. Here we describe an approach for optimizing the use of transcription factors (TFs) in cellular reprogramming, based on a device commonly used in optimal control. We construct an approximate model for the natural evolution of a cell-cycle-synchronized population of human fibroblasts, based on data obtained by sampling the expression of 22,083 genes at several time points during the cell cycle. To arrive at a model of moderate complexity, we cluster gene expression based on division of the genome into topologically associating domains (TADs) and then model the dynamics of TAD expression levels. Based on this dynamical model and additional data, such as known TF binding sites and activity, we develop a methodology for identifying the top TF candidates for a specific cellular reprogramming task. Our data-guided methodology identifies a number of TFs previously validated for reprogramming and/or natural differentiation and predicts some potentially useful combinations of TFs. Our findings highlight the immense potential of dynamical models, mathematics, and data-guided methodologies for improving strategies for control over biological processes.


Asunto(s)
Algoritmos , Reprogramación Celular/genética , Biología Computacional/métodos , Fibroblastos/citología , Factores de Transcripción/genética , Sitios de Unión/genética , Ciclo Celular/genética , Diferenciación Celular , Células Cultivadas , Reprogramación Celular/fisiología , Perfilación de la Expresión Génica , Genoma Humano/genética , Humanos , Modelos Genéticos
11.
Methods ; 123: 119-127, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28461134

RESUMEN

The human genome is dynamic in structure, complicating researcher's attempts at fully understanding it. Time series "Fluorescent in situ Hybridization" (FISH) imaging has increased our ability to observe genome structure, but due to cell type and experimental variability this data is often noisy and difficult to analyze. Furthermore, computational analysis techniques are needed for homolog discrimination and canonical framework detection, in the case of time-series images. In this paper we introduce novel ideas for nucleus imaging analysis, present findings extracted using dynamic genome imaging, and propose an objective algorithm for high-throughput, time-series FISH imaging. While a canonical framework could not be detected beyond statistical significance in the analyzed dataset, a mathematical framework for detection has been outlined with extension to 3D image analysis.


Asunto(s)
Proteínas CLOCK/genética , Núcleo Celular/metabolismo , Fibroblastos/metabolismo , Genoma Humano , Ensayos Analíticos de Alto Rendimiento , Imagenología Tridimensional/métodos , Algoritmos , Proteínas CLOCK/metabolismo , Línea Celular , Núcleo Celular/ultraestructura , Ritmo Circadiano/genética , Fibroblastos/ultraestructura , Regulación de la Expresión Génica , Humanos , Imagenología Tridimensional/instrumentación , Hibridación Fluorescente in Situ , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo
12.
Proc Natl Acad Sci U S A ; 112(26): 8002-7, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26080430

RESUMEN

The 4D organization of the interphase nucleus, or the 4D Nucleome (4DN), reflects a dynamical interaction between 3D genome structure and function and its relationship to phenotype. We present initial analyses of the human 4DN, capturing genome-wide structure using chromosome conformation capture and 3D imaging, and function using RNA-sequencing. We introduce a quantitative index that measures underlying topological stability of a genomic region. Our results show that structural features of genomic regions correlate with function with surprising persistence over time. Furthermore, constructing genome-wide gene-level contact maps aided in identifying gene pairs with high potential for coregulation and colocalization in a manner consistent with expression via transcription factories. We additionally use 2D phase planes to visualize patterns in 4DN data. Finally, we evaluated gene pairs within a circadian gene module using 3D imaging, and found periodicity in the movement of clock circadian regulator and period circadian clock 2 relative to each other that followed a circadian rhythm and entrained with their expression.


Asunto(s)
Núcleo Celular/metabolismo , Genoma Humano , Interfase , Ritmo Circadiano/genética , Redes Reguladoras de Genes , Humanos
13.
Nucleus ; 6(1): 55-65, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25738643

RESUMEN

In the study of interphase chromosome organization, genome-wide chromosome conformation capture (Hi-C) maps are often generated using 2-dimensional (2D) monolayer cultures. These 2D cells have morphological deviations from cells that exist in 3-dimensional (3D) tissues in vivo, and may not maintain the same chromosome conformation. We used Hi-C maps to test the extent of differences in chromosome conformation between human fibroblasts grown in 2D cultures and those grown in 3D spheroids. Significant differences in chromosome conformation were found between 2D cells and those grown in spheroids. Intra-chromosomal interactions were generally increased in spheroid cells, with a few exceptions, while inter-chromosomal interactions were generally decreased. Overall, chromosomes located closer to the nuclear periphery had increased intra-chromosomal contacts in spheroid cells, while those located more centrally had decreased interactions. This study highlights the necessity to conduct studies on the topography of the interphase nucleus under conditions that mimic an in vivo environment.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Cromosomas Humanos/química , Fibroblastos/citología , Conformación Molecular , Esferoides Celulares/citología , Genómica , Humanos , Interfase , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA