Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 15(1): 5834, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992003

RESUMEN

We present Dystrophic Epidermolysis Bullosa Cell Therapy (DEBCT), a scalable platform producing autologous organotypic iPS cell-derived induced skin composite (iSC) grafts for definitive treatment. Clinical-grade manufacturing integrates CRISPR-mediated genetic correction with reprogramming into one step, accelerating derivation of COL7A1-edited iPS cells from patients. Differentiation into epidermal, dermal and melanocyte progenitors is followed by CD49f-enrichment, minimizing maturation heterogeneity. Mouse xenografting of iSCs from four patients with different mutations demonstrates disease modifying activity at 1 month. Next-generation sequencing, biodistribution and tumorigenicity assays establish a favorable safety profile at 1-9 months. Single cell transcriptomics reveals that iSCs are composed of the major skin cell lineages and include prominent holoclone stem cell-like signatures of keratinocytes, and the recently described Gibbin-dependent signature of fibroblasts. The latter correlates with enhanced graftability of iSCs. In conclusion, DEBCT overcomes manufacturing and safety roadblocks and establishes a reproducible, safe, and cGMP-compatible therapeutic approach to heal lesions of DEB patients.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Colágeno Tipo VII , Epidermólisis Ampollosa Distrófica , Células Madre Pluripotentes Inducidas , Humanos , Epidermólisis Ampollosa Distrófica/terapia , Epidermólisis Ampollosa Distrófica/genética , Animales , Células Madre Pluripotentes Inducidas/trasplante , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Ratones , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Fibroblastos/metabolismo , Diferenciación Celular , Queratinocitos/metabolismo , Queratinocitos/trasplante , Piel/metabolismo , Trasplante Autólogo , Masculino , Mutación , Femenino , Trasplante de Piel/métodos , Edición Génica/métodos , Sistemas CRISPR-Cas
4.
Pigment Cell Melanoma Res ; 37(3): 378-390, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38343115

RESUMEN

We have discovered that human vitiligo patients treated with narrow-band UVB (NBUVB) demonstrated localized resistance to repigmentation in skin sites characterized by distinct cellular and molecular pathways. Using immunostaining studies, discovery-stage RNA-Seq analysis, and confirmatory in situ hybridization, we analyzed paired biopsies collected from vitiligo lesions that did not repigment after 6 months of NBUVB treatment (non-responding) and compared them with repigmented (responding) lesions from the same patient. Non-responding lesions exhibited acanthotic epidermis, had low number of total, proliferative, and differentiated melanocyte (MC) populations, and increased number of senescent keratinocytes (KCs) and of cytotoxic CD8+ T cells as compared with responding lesions. The abnormal response in the non-responding lesions was driven by a dysregulated cAMP pathway and of upstream activator PDE4B, and of WNT/ß-catenin repigmentation pathway. Vitiligo-responding lesions expressed high levels of WNT10B ligand, a molecule that may prevent epidermal senescence induced by NBUVB, and that in cultured melanoblasts prevented the pro-melanogenic effect of α-MSH. Understanding the pathways that govern lack of NBUVB-induced vitiligo repigmentation has a great promise in guiding the development of new therapeutic strategies for vitiligo.


Asunto(s)
Epidermis , Melanocitos , Pigmentación de la Piel , Vitíligo , Vitíligo/patología , Vitíligo/radioterapia , Vitíligo/metabolismo , Humanos , Epidermis/patología , Epidermis/metabolismo , Epidermis/efectos de la radiación , Pigmentación de la Piel/efectos de la radiación , Melanocitos/patología , Melanocitos/metabolismo , Melanocitos/efectos de la radiación , Terapia Ultravioleta/métodos , Queratinocitos/metabolismo , Queratinocitos/patología , Queratinocitos/efectos de la radiación , Rayos Ultravioleta , Femenino , Masculino , Vía de Señalización Wnt , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética
5.
Bio Protoc ; 14(2): e4919, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38268973

RESUMEN

Human skin reconstruction on immune-deficient mice has become indispensable for in vivo studies performed in basic research and translational laboratories. Further advancements in making sustainable, prolonged skin equivalents to study new therapeutic interventions rely on reproducible models utilizing patient-derived cells and natural three-dimensional culture conditions mimicking the structure of living skin. Here, we present a novel step-by-step protocol for grafting human skin cells onto immunocompromised mice that requires low starting cell numbers, which is essential when primary patient cells are limited for modeling skin conditions. The core elements of our method are the sequential transplantation of fibroblasts followed by keratinocytes seeded into a fibrin-based hydrogel in a silicone chamber. We optimized the fibrin gel formulation, timing for gel polymerization in vivo, cell culture conditions, and seeding density to make a robust and efficient grafting protocol. Using this approach, we can successfully engraft as few as 1.0 × 106 fresh and 2.0 × 106 frozen-then-thawed keratinocytes per 1.4 cm2 of the wound area. Additionally, it was concluded that a successful layer-by-layer engraftment of skin cells in vivo could be obtained without labor-intensive and costly methodologies such as bioprinting or engineering complex skin equivalents. Key features • Expands upon the conventional skin chamber assay method (Wang et al., 2000) to generate high-quality skin grafts using a minimal number of cultured skin cells. • The proposed approach allows the use of frozen-then-thawed keratinocytes and fibroblasts in surgical procedures. • This system holds promise for evaluating the functionality of skin cells derived from induced pluripotent stem cells and replicating various skin phenotypes. • The entire process, from thawing skin cells to establishing the graft, requires 54 days. Graphical overview.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...