Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (115)2016 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-27684738

RESUMEN

Studying co-evolution of hydrological and biogeochemical processes in the subsurface of natural landscapes can enhance the understanding of coupled Earth-system processes. Such knowledge is imperative in improving predictions of hydro-biogeochemical cycles, especially under climate change scenarios. We present an experimental method, designed to capture sub-surface heterogeneity of an initially homogeneous soil system. This method is based on destructive sampling of a soil lysimeter designed to simulate a small-scale hillslope. A weighing lysimeter of one cubic meter capacity was divided into sections (voxels) and was excavated layer-by-layer, with sub samples being collected from each voxel. The excavation procedure was aimed at detecting the incipient heterogeneity of the system by focusing on the spatial assessment of hydrological, geochemical, and microbiological properties of the soil. Representative results of a few physicochemical variables tested show the development of heterogeneity. Additional work to test interactions between hydrological, geochemical, and microbiological signatures is planned to interpret the observed patterns. Our study also demonstrates the possibility of carrying out similar excavations in order to observe and quantify different aspects of soil-development under varying environmental conditions and scale.


Asunto(s)
Hidrología/métodos , Microbiología del Suelo , Suelo/química , Cambio Climático , Contaminantes del Suelo/química
2.
Rev Environ Health ; 29(1-2): 23-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24552959

RESUMEN

Mine tailings contain multiple toxic metal(loid)s that pose a threat to human health via inhalation and ingestion. The goals of this research include understanding the speciation and molecular environment of these toxic metal(loid)s (arsenic and lead) as well as the impacts particle size and residence time have on their bioaccessibilty in simulated gastric and lung fluid. Additionally, future work will include smaller size fractions (PM10 and PM2.5) of surface mine tailings, with the goal of increasing our understanding of multi-metal release from contaminated geo-dusts in simulated bio-fluids. This research is important to environmental human health risk assessment as it increases the accuracy of exposure estimations to toxic metal(loid)s.


Asunto(s)
Arsénico/química , Polvo/análisis , Contaminantes Ambientales/química , Plomo/química , Minería , Arizona , Técnicas In Vitro , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...