Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 46(24): 6047-6050, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34913915

RESUMEN

Optical rectification in nonlinear crystals is a well-established method for generating terahertz (THz) waves from ultra-short optical pulses. To achieve high conversion efficiency, the phase-matching conditions between the pump pulse and the generated THz wave within the nonlinear medium must be satisfied. For a ytterbium laser operating at 1.024 µm, a severe phase mismatch occurs in the zinc telluride (ZnTe) crystal, preventing the efficient generation of broadband THz pulses. Using time-frequency analysis, we show that the ultrafast charge carrier dynamic, mainly induced by two-photon absorption, generated in the nonlinear medium during optical rectification processes in ZnTe, plays a crucial role in the filtering of the out-of-phase components of the THz signal, thus enabling the recovery of broadband THz pulse generations.

2.
Opt Lett ; 45(13): 3589-3592, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630906

RESUMEN

The rapid growth of information technology is closely linked to our ability to modulate and demodulate a signal, whether in the frequency or in the time domain. Recent demonstrations of terahertz (THz) modulation involve active semiconductor metamaterial surfaces or use of a grating-based micromirror for frequency offset tuning. However, a wideband and active differentiator in the THz frequency band is yet to be demonstrated. Here, we propose a simple method to differentiate a THz pulse by inducing tiny phase changes on the THz beam path using a piezoelectric micromachined ultrasonic transducer array. We precisely demonstrate that the modulated THz signal detected after the piezoelectric device is proportional to the first-order derivative of the THz pulse. The proposed technique will be able to support a wide range of THz applications, such as peak detection schemes for telecommunication systems.

3.
Opt Lett ; 43(21): 5463-5466, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30383033

RESUMEN

In this Letter, we investigate the nonlinear effects of extremely intense few-cycle terahertz (THz) pulses (generated from the organic crystal 4-NN, NN-dimethylamino-4'4'-N'N'-methyl-stilbazolium 2, 4, 6 trimethylbenzenesulfonate, with peak electrical fields of a few MV/cm) on the carrier dynamics in n-doped semiconductor thin film In0.53Ga0.47As. By performing open-aperture Z-scan measurements and recording the transmitted THz energy through semiconductor sample, we observed a strong THz absorption bleaching effect at high fields, followed by an absorption enhancement at even higher fields. We attribute our observations to a crossover from pure intraband carrier dynamics to an interplay between intraband carrier heating and interband carrier generations.

4.
Sci Rep ; 7: 40058, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28071764

RESUMEN

We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with a length of 5 µm, a maximum 13.8 times enhancement in the THz pulse energy (in ≤20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies (≤20 THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20-200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets with a length of 60 µm. Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results.

5.
Opt Express ; 24(11): 11299-311, 2016 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-27410061

RESUMEN

We report the generation of free space terahertz (THz) pulses with energy up to 8.3 ± 0.2 µJ from an encapsulated interdigitated ZnSe Large Aperture Photo-Conductive Antenna (LAPCA). An aperture of 12.2 cm2 is illuminated using a 400 nm pump laser with multi-mJ energies at 10 Hz repetition rate. The calculated THz peak electric field is 331 ± 4 kV/cm with a spectrum characterized by a median frequency of 0.28 THz. Given its relatively low frequency, this THz field will accelerate charged particles efficiently having very large ponderomotive energy of 15 ± 1 eV for electrons in vacuum. The scaling of the emission is studied with respect to the dimensions of the antenna, and it is observed that the capacitance of the LAPCA leads to a severe decrease in and distortion of the biasing voltage pulse, fundamentally limiting the maximum applied bias field and consequently the maximum energy of the radiated THz pulses. In order to demonstrate the advantages of this source in the strong field regime, an open-aperture Z-scan experiment was performed on n-doped InGaAs, which showed significant absorption bleaching.

6.
Opt Lett ; 39(15): 4333-6, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25078170

RESUMEN

We report on terahertz (THz) generation via optical rectification in a room-temperature lithium niobate crystal under variable pump pulse durations, ranging from 100 to 300 fs, at 800 nm center wavelength. The efficiency for the process is predicted to have an order of magnitude increase when longer duration Fourier-limited pump pulses are used. Our results confirm this increase in efficiency, and we report a record 800 nm pump energy conversion efficiency of 0.35% with a saturation at >240 fs pulse duration. While promising, our findings show a series of key problems that must be overcome before the theoretical limit can be achieved, including the influence of the pump bandwidth broadening due to the cascaded nonlinearity taking place within the crystal.

7.
Opt Express ; 17(8): 6044-52, 2009 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-19365426

RESUMEN

We investigate the intensity dependent spatial drift of two-color plasma based terahertz (THz) sources. A simple scheme that uses an off-axis parabolic mirror is presented to overcome this shifting. In addition, the THz energy and electric field measurements are related via the real time images of the THz spot size.


Asunto(s)
Gases/química , Calor , Rayos Láser , Espectroscopía de Terahertz/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Radiación Terahertz , Espectroscopía de Terahertz/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...