Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioorg Chem ; 116: 105279, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34509799

RESUMEN

Staphylococcus aureus is the one of the most successful modern pathogens. The same bacterium that lives as a skin and mucosal commensal can be transmitted in health-care and community-settings and causes severe infections. Thus, there is a great challenge for a discovery of novel anti-Staphylococcus aureus compounds, which should act against resistant strains. Herein, we designed and synthesized a series of 17 chalcones, substituted by amino group on ring A, which were evaluated against methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus MRSA planktonic cells. The antibacterial potency was improved by substituents on ring B, which were designed according to Topliss' manual method. 4-bromo-3'-aminochalcone (5f) was the most active, demonstrating minimum inhibitory concentration (MIC) values of 1.9 µg mL-1 and 7.8 µg mL-1 against MSSA and MRSA, respectively. The association of 5f with vancomycin demonstrated synergistic effect against MSSA and MRSA, with Fractional Inhibitory Concentration Index (FICI) values of 0.4 and 0.3, respectively. Subinhibitory concentration of 5f inhibited the MSSA and MRSA adhesion to human keratinocytes. Chalcone 5f was able to reduce MSSA and MRSA biofilm formation, as well as acts on preformed biofilm in concentration-dependent mode. Scanning electron microscopy analyses confirmed severe perturbations caused by 5f on MSSA and MRSA biofilm architecture. The acute toxicity assay, using Galleria mellonella larvae, indicated a low toxic effect of 5f after 72 h, displaying lethality of 20% and 30% at 7.8 µg mL-1 and 78.0 µg mL-1, respectively. In addition, the antibacterial activity spectrum of 5f indicated action against planktonic cells of Enterococcus faecalis (MIC = 7.8 µg mL-1), Acinetobacter baumannii (MIC = 15.6 µg mL-1) and Mycobacterium tuberculosis (MIC = 5.7 µg mL-1). Altogether, these results open new avenues for 5f as an anti-Staphylococcus aureus agent, with potential applications as antibacterial drug, adjunct of antibiotics and medical devices coating.


Asunto(s)
Antibacterianos/farmacología , Chalconas/farmacología , Diseño de Fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Biopelículas/efectos de los fármacos , Chalconas/síntesis química , Chalconas/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
2.
Molecules ; 26(15)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34361848

RESUMEN

The industrial processing of crude propolis generates residues. Essential oils (EOs) from propolis residues could be a potential source of natural bioactive compounds to replace antibiotics and synthetic antioxidants in pig production. In this study, we determined the antibacterial/antioxidant activity of EOs from crude organic propolis (EOP) and from propolis residues, moist residue (EOMR), and dried residue (EODR), and further elucidated their chemical composition. The EOs were extracted by hydrodistillation, and their volatile profile was tentatively identified by GC-MS. All EOs had an antibacterial effect on Escherichia coli and Lactobacillus plantarum as they caused disturbances on the growth kinetics of both bacteria. However, EODR had more selective antibacterial activity, as it caused a higher reduction in the maximal culture density (D) of E. coli (86.7%) than L. plantarum (46.9%). EODR exhibited mild antioxidant activity, whereas EOMR showed the highest antioxidant activity (ABTS = 0.90 µmol TE/mg, FRAP = 463.97 µmol Fe2+/mg) and phenolic content (58.41 mg GAE/g). Each EO had a different chemical composition, but α-pinene and ß-pinene were the major compounds detected in the samples. Interestingly, specific minor compounds were detected in a higher relative amount in EOMR and EODR as compared to EOP. Therefore, these minor compounds are most likely responsible for the biological properties of EODR and EOMR. Collectively, our findings suggest that the EOs from propolis residues could be resourcefully used as natural antibacterial/antioxidant additives in pig production.


Asunto(s)
Antibacterianos , Antioxidantes , Escherichia coli/crecimiento & desarrollo , Lactobacillus plantarum/crecimiento & desarrollo , Aceites Volátiles , Própolis/química , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Aceites Volátiles/farmacología
3.
Bioorg Chem ; 109: 104668, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33601139

RESUMEN

Curcumin (CUR) is a symmetrical dicarbonyl compound with antibacterial activity. On the other hand, pharmacokinetic and chemical stability limitations hinder its therapeutic application. Monocarbonyl analogs of curcumin (MACs) have been shown to overcome these barriers. We synthesized and investigated the antibacterial activity of a series of unsymmetrical MACs derived from acetone against Mycobacterium tuberculosis and Gram-negative and Gram-positive species. Phenolic MACs 4, 6 and 8 showed a broad spectrum and potent activity, mainly against M. tuberculosis, Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus (MRSA), with MIC (minimum inhibitory concentration) values ranging from 0.9 to 15.6 µg/mL. The investigation regarding toxicity on human lung cells (MRC-5 and A549 lines) revealed MAC 4 was more selective than MACs 6 and 8, with SI (selectivity index) values ranging from 5.4 to 15.6. In addition, MAC 4 did not demonstrate genotoxic effects on A549 cells and it was more stable than CUR in phosphate buffer (pH 7.4) for 24 h at 37 °C. Fluorescence and phase contrast microscopies indicated that MAC 4 has the ability to disrupt the divisome of Bacillus subtilis without damaging its cytoplasmic membrane. However, biochemical investigations demonstrated that MAC 4 did not affect the GTPase activity of B. subtilis FtsZ, which is the main constituent of the bacterial divisome. These results corroborated that MAC 4 is a promising antitubercular and antibacterial agent.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Curcumina/análogos & derivados , Curcumina/farmacología , Bacillus subtilis/efectos de los fármacos , Línea Celular , Curcumina/química , Diseño de Fármacos , Desarrollo de Medicamentos , Humanos , Pulmón/citología , Estructura Molecular
4.
J Periodontol ; 91(12): 1694-1703, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32294250

RESUMEN

BACKGROUND: Desipramine is a tricyclic antidepressant with immune-modulatory activity, whose effects on ligature-induced periodontitis are yet to be investigated. Hence, its actions on alveolar bone resorption, gingival collagen content and key inflammatory mediators were herewith analyzed. METHODS: A total of 60 male Wistar rats were randomly assigned into three groups: 1) control: rats without ligature treated with vehicle (saline); 2) ligature: rats with ligature-induced periodontitis treated with vehicle; 3) ligature + desipramine: rats with ligature-induced periodontitis treated with desipramine (20 mg/kg/d in vehicle). Mandibles and gingival tissues were collected 3 or 15 days after ligature insertion (or no ligature insertion for controls) and treatments. Alveolar bone resorption and gingival collagen fibers were histologically analyzed using either HE or picrosirius red staining. Gingival mRNA expressions of interleukin (IL)-1ß, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-9 and tissue inhibitor of metalloproteinase (TIMP)-1 were obtained through reverse transcription polymerase chain reaction. MMP-9 activity was analyzed by zymography. RESULTS: Alveolar bone loss was significantly reduced in the ligature + desipramine group (P < 0.05), whereas gingival collagen degradation was like the ligature group (P > 0.05). Desipramine administration downregulated mRNA expressions of IL-1ß, iNOS, COX-2, and TIMP-1 when compared to vehicle alone in the ligature group (P < 0.05). MMP-9 expression and MMP-9/TIMP-1 ratio were similar among rats with ligature-induced periodontitis (P > 0.05); however, MMP-9 activity was lower in the group treated with desipramine (P < 0.05). CONCLUSION: Desipramine administration reduced alveolar bone loss as histologically observed, and modulated key bone remodeling and inflammatory mediators in rats with ligature-induced periodontitis.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Pérdida de Hueso Alveolar/tratamiento farmacológico , Pérdida de Hueso Alveolar/prevención & control , Animales , Desipramina/farmacología , Desipramina/uso terapéutico , Modelos Animales de Enfermedad , Encía , Masculino , Periodontitis/tratamiento farmacológico , Ratas , Ratas Wistar
5.
Int Immunopharmacol ; 82: 106329, 2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32114412

RESUMEN

Previously, we demonstrated the anti-inflammatory properties of vestitol in a neutrophil model. Here, we show the effects of vestitol on macrophage activation and function. Vestitol was obtained from Brazilian red propolis after bioguided fractionation and tested at different concentrations in LPS-activated RAW 264.7 murine macrophages for nitric oxide (NO) production and cell viability. The levels of TNF-α, IL1-ß, TGF-ß, IL-4, IL-6, IL-10, IL-12, GM-CSF, IFN-É£ and gene expression related to cytokines, NO, PI3K-AKT and signal transduction pathways were assayed by ELISA and RT-qPCR, respectively. Differences were determined by one-way ANOVA followed by Tukey-Kramer. Vestitol inhibited NO production by 83% at 0.55 µM without affecting cell viability when compared to the vehicle control (P < 0.05). Treatment with vestitol reduced GM-CSF, IL-6, TNF-α, IL-4 and TGF-ß levels and increased IL-10 release (P < 0.05). Vestitol affected the expression of genes related to NF-κB pathway, NO synthase, and inhibition of leukocyte transmigration, namely: Ccs, Ccng1, Calm1, Tnfsf15, Il11, Gata3, Gadd45b, Cdkn1b, Csf1, Ccl5, Birc3 (negatively regulated), and Igf1 (positively regulated). Vestitol diminished the activation of NF-κB and Erk 1/2 pathways and induced macrophages into M2-like polarization. The modulatory effects of vestitol are due to inhibition of NF-κB and Erk 1/2 signaling pathways, which are associated with the production of pro-inflammatory factors.

6.
Med Chem ; 16(7): 881-891, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31339075

RESUMEN

BACKGROUND: Chalcones substituted by methoxyl groups have presented a broad spectrum of bioactivities, including antifungal, antibacterial and antiproliferative effects. However, a clear and unambiguous investigation about the relevance of this substituent on the chalcone framework has not been described. OBJECTIVE: The purpose of this work is to assess the antibacterial, antifungal and antiproliferative activities of the two series of seventeen synthesized regioisomeric methoxychalcones. Series I and II were constituted by chalcones substituted by methoxyl groups on rings A (5-12) and B (13-21), respectively. In addition, the library of methoxychalcones was submitted to in silico drug-likeness and pharmacokinetics properties predictions. METHODS: Methoxychalcones were synthesized and their structures were confirmed by NMR spectral data analyses. Evaluations of antimicrobial activity were performed against five species of Candida, two Gram-negative and five Gram-positive species. For antiproliferative activity, methoxychalcones were evaluated against four human tumorigenic cell lines, as well as human non-tumorigenic keratinocytes. Drug-likeness and pharmacokinetics properties were predicted using Molinspiration and PreADMET toolkits. RESULTS: In general, chalcones of series I are the most potent antifungal, antibacterial and antiproliferative agents. 3', 4', 5'-Trimethoxychalcone (12) demonstrated potent antifungal activity against Candida krusei (MIC = 3.9 µg/mL), eight times more potent than fluconazole (reference antifungal drug). 3'-Methoxychalcone (6) displayed anti-Pseudomonas activity (MIC = 7.8 µg/mL). 2',5'-Dimethoxychalcone (9) displayed potent antiproliferative effect against C-33A (cervix), A-431 (skin) and MCF-7 (breast), with IC50 values ranging from 7.7 to 9.2 µM. Its potency was superior to curcumin (reference antiproliferative compound), which exhibited IC50 values ranging from 10.4 to 19.0 µM. CONCLUSION: Our studies corroborated the relevance of methoxychalcones as antifungal, antibacterial and antiproliferative agents. In addition, we elucidated influence of the position and number of methoxyl groups toward bioactivity. In silico predictions indicated good drug-likeness and pharmacokinetics properties to the library of methoxychalcones.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Antineoplásicos/farmacología , Chalconas/farmacología , Hongos/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chalconas/síntesis química , Chalconas/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Pruebas de Sensibilidad Microbiana
7.
Adv Biol Regul ; 75: 100672, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31685431

RESUMEN

Improving the effects of chemotherapy and reducing the side effects are important goals in cancer research. Various approaches have been examined to enhance the effectiveness of chemotherapy. For example, signal transduction inhibitors or hormonal based approaches have been included with chemo- or radio-therapy. MIA-PaCa-2 and BxPC-3 pancreatic ductal adenocarcinoma (PDAC) cells both express the estrogen receptor (ER). The effects of ß-estradiol on the growth of PDAC cells has not been examined yet the ER is expressed in PDAC cells. We have examined the effects of combining ß-estradiol with chemotherapeutic drugs, signal transcription inhibitors, natural products and nutraceuticals on PDAC. In most cases, inclusion of ß-estradiol with chemotherapeutic drugs increased chemosensitivity. These results indicate some approaches involving ß-estradiol which may be used to increase the effectiveness of chemotherapeutic and other drugs on the growth of PDAC.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Ductal Pancreático , Proliferación Celular/efectos de los fármacos , Suplementos Dietéticos , Estradiol/farmacología , Neoplasias Pancreáticas , Transducción de Señal/efectos de los fármacos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Femenino , Interacciones Alimento-Droga , Humanos , Persona de Mediana Edad , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología
8.
Future Microbiol ; 14: 1207-1220, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31625441

RESUMEN

Aim: To evaluate antimicrobial activity of a new nitrochalcone (NC-E08) against Candida albicans and Streptococcus mutans, and its toxicity. Materials & methods: Minimum inhibitory concentration (MIC) and minimum bactericidal concentration/minimum fungicidal concentration (MFC) were determined against C. albicans and S. mutans, as well as antibiofilm potential and toxicity (human gingival fibroblast and Galleria mellonella). Infection and treatment were performed in G. mellonella. Results & conclusion: NC-E08 showed antimicrobial activity in C. albicans (MIC: 0.054 mM) and S. mutans (MIC: 0.013 mM); 10xMIC treatment reduced 4.0 log10 biofilms for both strains and there was a reduction in survival of mixed biofilms of C. albicans and S. mutans (6.0 and 4.0 log10, respectively). NC-E08 showed no cytotoxicity in human gingival fibroblast cells and G. mellonella. NC-E08 after larval infection protected them 90% (p < 0.05). Thus, is a promising one for the prevention and treatment of S. mutans and C. albicans infections.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Chalconas/farmacología , Fitoquímicos/farmacología , Animales , Candida albicans/efectos de los fármacos , Células Cultivadas , Caries Dental/tratamiento farmacológico , Caries Dental/microbiología , Fibroblastos/efectos de los fármacos , Fibroblastos/microbiología , Encía/citología , Encía/efectos de los fármacos , Humanos , Larva , Pruebas de Sensibilidad Microbiana , Mariposas Nocturnas , Streptococcus mutans/efectos de los fármacos
9.
Adv Biol Regul ; 73: 100633, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31047842

RESUMEN

Pancreatic cancer is devastating cancer worldwide with few if any truly effective therapies. Pancreatic cancer has an increasing incidence and may become the second leading cause of death from cancer. Novel, more effective therapeutic approaches are needed as pancreatic cancer patients usually survive for less than a year after being diagnosed. Control of blood sugar levels by the prescription drug metformin in diseases such as diabetes mellitus has been examined in association with pancreatic cancer. While the clinical trials remain inconclusive, there is hope that certain diets and medications may affect positively the outcomes of patients with pancreatic and other cancers. Other natural compounds may share some of the effects of metformin. One "medicinal" fruit consumed by millions worldwide is berberine (BBR). Metformin and BBR both activate AMP-activated protein kinase (AMPK) which is a key mediator of glucose metabolism. Glucose metabolism has been shown to be very important in cancer and its significance is increasing. In the following studies, we have examined the effects of metformin, BBR and a panel of modified BBRs (NAX compounds) and chemotherapeutic drugs on the growth of four different human pancreatic adenocarcinoma cell lines (PDAC). Interestingly, the effects of metformin could be enhanced by BBR and certain modified BBRs. Upon restoration of WT-TP53 activity in MIA-PaCa-2 cells, an altered sensitivity to the combination of certain NAX compounds and metformin was observed compared to the parental cells which normally lack WT-TP53. Certain NAX compounds may interact with WT-TP53 and metformin treatment to alter the expression of key molecules involved in cell growth. These results suggest a therapeutic approach by combining certain pharmaceutical drugs and nutraceuticals to suppress the growth of cancer cells.


Asunto(s)
Berberina , Proliferación Celular/efectos de los fármacos , Metformina/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/mortalidad , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/metabolismo , Berberina/análogos & derivados , Berberina/uso terapéutico , Humanos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/patología
10.
J Oral Microbiol ; 11(1): 1607505, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31143407

RESUMEN

Background: Streptococcus mutans orchestrates the development of a biofilm that causes dental caries in the presence of dietary sucrose, and, in the bloodstream, S. mutans can cause systemic infections. The development of a cariogenic biofilm is dependent on the formation of an extracellular matrix rich in exopolysaccharides, which contains extracellular DNA (eDNA) and lipoteichoic acids (LTAs). While the exopolysaccharides are virulence markers, the involvement of genes linked to eDNA and LTAs metabolism in the pathogenicity of S. mutans remains unclear. Objective and Design: In this study, a parental strain S. mutans UA159 and derivative strains carrying single gene deletions were used to investigate the role of eDNA (ΔlytS and ΔlytT), LTA (ΔdltA and ΔdltD), and insoluble exopolysaccharides (ΔgtfB) in virulence in a rodent model of dental caries (rats) and a systemic infection model (Galleria mellonella larvae). Results: Fewer carious lesions were observed on smooth and sulcal surfaces of enamel and dentin of the rats infected with ∆lytS, ∆dltD, and ΔgtfB (vs. the parental strain). Moreover, strains carrying gene deletions prevented the killing of larvae (vs. the parental strain). Conclusions: Altogether, these findings indicate that inactivation of lytST and dltAD impaired S. mutans cariogenicity and virulence in vivo.

11.
Food Chem ; 290: 229-238, 2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31000041

RESUMEN

Free radical imbalance is associated with several chronic diseases. However, recent controversies have put in check the validity of colorimetric methods to screen the functionality of polyphenols. Therefore, in this study two antioxidant methods, based on chemical reactions, were tested for their ability in anticipating the reduction of the activation of NF-κB using LPS-activated RAW 264.7 macrophages, selected as a biological model. Grape processing by-products from winemaking showed higher total phenolic content (TPC), antioxidant capacity towards peroxyl radical (31.1%) as well as reducing power (39.5%) than those of grape juice by-products. The same trend was observed when these samples were tested against LPS-activated RAW 264.7 macrophages by reducing the activation NF-κB. Feedstocks containing higher TPC and corresponding ORAC and FRAP results translated to higher reduction in the activation of NF-κB (36.5%). Therefore, this contribution demonstrates that colorimetric methods are still important screening tools owing their simplicity and widespread application.


Asunto(s)
Antioxidantes/química , FN-kappa B/metabolismo , Fenoles/química , Vitis/química , Animales , Antioxidantes/farmacología , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Colorimetría , Lipopolisacáridos/toxicidad , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Fenoles/farmacología , Extractos Vegetales/química , Análisis de Componente Principal , Células RAW 264.7 , Vitis/metabolismo
12.
Adv Biol Regul ; 72: 22-40, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30898612

RESUMEN

Mutations at the TP53 gene are readily detected (approximately 50-75%) in pancreatic ductal adenocarcinoma (PDAC) patients. TP53 was previously thought to be a difficult target as it is often mutated, deleted or inactivated on both chromosomes in certain cancers. In the following study, the effects of restoration of wild-type (WT) TP53 activity on the sensitivities of MIA-PaCa-2 pancreatic cancer cells to the MDM2 inhibitor nutlin-3a in combination with chemotherapy, targeted therapy, as well as, nutraceuticals were examined. Upon introduction of the WT-TP53 gene into MIA-PaCa-2 cells, which contain a TP53 gain of function (GOF) mutation, the sensitivity to the MDM2 inhibitor increased. However, effects of nutlin-3a were also observed in MIA-PaCa-2 cells lacking WT-TP53, as upon co-treatment with nutlin-3a, the sensitivity to certain inhibitors, chemotherapeutic drugs and nutraceuticals increased. Interestingly, co-treatment with nutlin-3a and certain chemotherapeutic drug such as irinotecan and oxaliplatin resulted in antagonistic effects in cells both lacking and containing WT-TP53 activity. These studies indicate the sensitizing abilities that WT-TP53 activity can have in PDAC cells which normally lack WT-TP53, as well as, the effects that the MDM2 inhibitor nutlin-3a can have in both cells containing and lacking WT-TP53 to various therapeutic agents.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/metabolismo , Imidazoles/farmacología , Neoplasias Pancreáticas/metabolismo , Piperazinas/farmacología , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Suplementos Dietéticos/análisis , Humanos , Irinotecán/farmacología , Oxaliplatino/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética
13.
Adv Biol Regul ; 71: 172-182, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30361003

RESUMEN

Berberine (BBR) is a common nutraceutical consumed by millions worldwide. BBR has many different effects on human health, e.g., diabetes, diarrhea, inflammation and now more recently it has been proposed to have potent anti-cancer effects. BBR has been shown to suppress the growth of cancer cells more than normal cells. BBR has been proposed to exert its growth-inhibitory effects by many different biochemical mechanisms including: suppression of cell cycle progression, induction of reactive oxygen species, induction of apoptosis and autophagy and interactions with DNA potentially leading to DNA damage, and altered gene expression. Pancreatic cancer is a leading cancer worldwide associated with a poor prognosis. As our population ages, pancreatic cancer has an increasing incidence and will likely become the second leading cause of death from cancer. There are few truly-effective therapeutic options for pancreatic cancer. Surgery and certain chemotherapeutic drugs are used to treat pancreatic cancer patients. Novel approaches to treat pancreatic cancer patients are direly needed as they usually survive for less than a year after being diagnosed. In the following manuscript, we discuss the abilities of BBR and certain chemically-modified BBRs (NAX compounds) to suppress growth of pancreatic cancer cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Berberina , Ciclo Celular/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Anciano , Berberina/análogos & derivados , Berberina/química , Berberina/farmacología , Línea Celular Tumoral , Daño del ADN , ADN de Neoplasias/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología
14.
Adv Biol Regul ; 69: 16-34, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29980405

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, highly metastatic malignancy and accounts for 85% of pancreatic cancers. PDAC patients have poor prognosis with a five-year survival of only 5-10%. Mutations at the TP53 gene are readily detected in pancreatic tumors isolated from PDAC patients. We have investigated the effects of restoration of wild-type (WT) TP53 activity on the sensitivity of pancreatic cancer cells to: chemotherapy, targeted therapy, as well as, nutraceuticals. Upon introduction of the WT-TP53 gene into the MIA-PaCa-2 pancreatic cancer cell line, the sensitivity to drugs used to treat pancreatic cancer cells such as: gemcitabine, fluorouracil (5FU), cisplatin, irinotecan, oxaliplatin, and paclitaxel increased significantly. Likewise, the sensitivity to drugs used to treat other cancers such as: doxorubicin, mitoxantrone, and 4 hydroxy tamoxifen (4HT) also increased upon introduction of WT-TP53 into MIA-PaCa-2 cells. Furthermore, the sensitivity to certain inhibitors which target: PI3K/mTORC1, PDK1, SRC, GSK-3, and biochemical processes such as proteasomal degradation and the nutraceutical berberine as increased upon introduction of WT-TP53. Furthermore, in some cases, cells with WT-TP53 were more sensitive to the combination of drugs and suboptimal doses of the MDM2 inhibitor nutlin-3a. However, TP53-independent effects of nutlin-3a were observed upon treatment with either a proteasomal or a PI3K/mTOR inhibitor. These studies indicate the sensitizing effects that WT-TP53 can have in PDAC cells which normally lack WT-TP53 to various therapeutic agents and suggest approaches to improve PDAC therapy.


Asunto(s)
Desoxicitidina/análogos & derivados , Fluorouracilo/farmacología , Neoplasias Pancreáticas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Desoxicitidina/farmacología , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Irinotecán/farmacología , Oxaliplatino/farmacología , Paclitaxel/farmacología , Transducción de Señal/efectos de los fármacos , Gemcitabina
15.
J Bacteriol ; 200(14)2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29735760

RESUMEN

The Dps-like peroxide resistance protein (Dpr) is essential for H2O2 stress tolerance and aerobic growth of the oral pathogen Streptococcus mutans Dpr accumulates during oxidative stress, protecting the cell by sequestering iron ions and thereby preventing the generation of toxic hydroxyl radicals that result from the interaction of iron with H2O2 Previously, we reported that the SpxA1 and SpxA2 regulators positively regulate expression of dpr in S. mutans Using an antibody raised against S. mutans Dpr, we confirmed at the protein level the central and cooperative nature of SpxA1 and SpxA2 regulation in Dpr production. During phenotypic characterization of the S. mutans Δdpr strain, we observed the appearance of distinct colony variants, which sometimes lost the oxidative stress sensitivity typical of Δdpr strains. Whole-genome sequencing of these phenotypically distinct Δdpr isolates revealed that a putative iron transporter operon, smu995-smu998, was a genomic hot spot with multiple single nucleotide polymorphisms identified within the different isolates. Deletion of smu995 or the entire smu995-smu998 operon in the Δdpr background strain completely reversed the oxidative stress-sensitive phenotypes associated with dpr inactivation. Conversely, inactivation of genes encoding the ferrous iron transport system FeoABC did not alleviate phenotypes of the Δdpr strain. Preliminary characterization of strains lacking smu995-smu998, feoABC, and the iron/manganese transporter gene sloABC revealed the interactive nature of these three systems in iron transport but also indicated that there may be additional iron uptake systems in S. mutansIMPORTANCE The dental caries-associated pathogen Streptococcus mutans routinely encounters oxidative stress within the human plaque biofilm. Previous studies revealed that the iron-binding protein Dpr confers protection toward oxidative stress by limiting free iron availability, which is associated with the generation of toxic hydroxyl radicals. Here, we report the identification of spontaneously occurring mutations within Δdpr strains. Several of those mutations were mapped to the operon smu995-smu998, revealing a previously uncharacterized system that appears to be important in iron acquisition. Disruption of the smu995-smu998 operon resulted in reversion of the stress-sensitive phenotype typical of a Δdpr strain. Our data suggest that the Smu995-Smu998 system works along with other known metal transport systems of S. mutans, i.e., FeoABC and SloABC, to coordinate iron uptake.


Asunto(s)
Proteínas Bacterianas/metabolismo , Peróxido de Hidrógeno/farmacología , Hierro/metabolismo , Estrés Oxidativo/fisiología , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Animales , Anticuerpos Antibacterianos , Proteínas Bacterianas/genética , Escherichia coli , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Mutación , Operón , Estrés Oxidativo/efectos de los fármacos , Conejos
16.
Adv Biol Regul ; 68: 13-30, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29482945

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, highly metastatic malignancy and accounts for 85% of pancreatic cancers. PDAC patients have poor prognosis with a five-year survival of only 5-10% after diagnosis and treatment. Pancreatic cancer has been associated with type II diabetes as the frequency of recently diagnosed diabetics that develop pancreatic cancer within a 10-year period of initial diagnosis of diabetes in increased in comparison to non-diabetic patients. Metformin is a very frequently prescribed drug used to treat type II diabetes. Metformin acts in part by stimulating AMP-kinase (AMPK) and results in the suppression of mTORC1 activity and the induction of autophagy. In the following studies, we have examined the effects of metformin in the presence of various chemotherapeutic drugs, signal transduction inhibitors and natural products on the growth of three different PDAC lines. Metformin, by itself, was not effective at suppressing growth of the pancreatic cancer cell lines at concentration less than 1000 nM, however, in certain PDAC lines, a suboptimal dose of metformin (250 nM) potentiated the effects of various chemotherapeutic drugs used to treat pancreatic cancer (e.g., gemcitabine, cisplatin, 5-fluorouracil) and other cancer types (e.g., doxorubicin, docetaxel). Furthermore, metformin could increase anti-proliferative effects of mTORC1 and PI3K/mTOR inhibitors as well as natural products such as berberine and the anti-malarial drug chloroquine in certain PDAC lines. Thus, metformin can enhance the effects of certain drugs and signal transduction inhibitors which are used to treat pancreatic and various other cancers.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Metformina/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Diabetes Mellitus Tipo 2 , Interacciones Farmacológicas , Humanos , Transducción de Señal/efectos de los fármacos , Sirolimus/uso terapéutico , Neoplasias Pancreáticas
17.
Adv Biol Regul ; 67: 190-211, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28988970

RESUMEN

Over the past fifty years, society has become aware of the importance of a healthy diet in terms of human fitness and longevity. More recently, the concept of the beneficial effects of certain components of our diet and other compounds, that are consumed often by different cultures in various parts of the world, has become apparent. These "healthy" components of our diet are often referred to as nutraceuticals and they can prevent/suppress: aging, bacterial, fungal and viral infections, diabetes, inflammation, metabolic disorders and cardiovascular diseases and have other health-enhancing effects. Moreover, they are now often being investigated because of their anti-cancer properties/potentials. Understanding the effects of various natural products on cancer cells may enhance their usage as anti-proliferative agents which may be beneficial for many health problems. In this manuscript, we discuss and demonstrate how certain nutraceuticals may enhance other anti-cancer drugs to suppress proliferation of cancer cells.


Asunto(s)
Antineoplásicos/uso terapéutico , Berberina/uso terapéutico , Curcumina/uso terapéutico , Suplementos Dietéticos , Neoplasias , Resveratrol/uso terapéutico , Transducción de Señal/efectos de los fármacos , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/patología , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología
18.
J Contemp Dent Pract ; 18(8): 635-640, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28816181

RESUMEN

BACKGROUND: Bauhinia forficata and Cnidoscolus quercifolius plants are commonly used in folk medicine. However, few studies have investigated their therapeutic potential. AIM: Herein, we evaluated the antimicrobial activity of B. forficata and C. quercifolius extracts against microorganisms of clinical relevance and their antiproliferative potential against tumor cells. MATERIALS AND METHODS: The following tests were performed: Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)/minimum fungicidal concentration (MFC), inhibition of biofilm adhesion, and effects on cell morphology. Antiproliferative tests were carried out with human keratinocytes and six tumor lines. RESULTS: Bauhinia forficata showed antimicrobial activity only against C. albicans with MIC of 15.62 ug/mL and MFC higher than 2000 ug/mL. It also inhibited biofilm adhesion and caused alterations in cell morphology. Cnidoscolus quercifolius showed no significant activity (MIC > 2.0 mg/mL) against the strains. Bauhinia forficata and C. quercifolius extracts showed cytostatic activity against the tumor cells. CONCLUSION: Bauhinia forficata has promising anti-Cand/da activity and should be further investigated for its therapeutic potential. CLINICAL SIGNIFICANCE: The use of medicinal plants in the treatment of infectious processes has an important function nowadays, due to the limitations of the use of synthetic antibiotics available, related specifically to the microbial resistance emergence.


Asunto(s)
Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Bauhinia , Candida albicans/efectos de los fármacos , Euphorbiaceae , Medicina Tradicional , Extractos Vegetales/farmacología , Biopelículas/efectos de los fármacos , Línea Celular Tumoral , Humanos , Pruebas de Sensibilidad Microbiana , Hojas de la Planta , Plantas Medicinales
19.
Aging (Albany NY) ; 9(6): 1477-1536, 2017 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-28611316

RESUMEN

Natural products or nutraceuticals have been shown to elicit anti-aging, anti-cancer and other health-enhancing effects. A key target of the effects of natural products may be the regulation of microRNA (miR) expression which results in cell death or prevents aging, diabetes, cardiovascular and other diseases. This review will focus on a few natural products, especially on resveratrol (RES), curcumin (CUR) and berberine (BBR). RES is obtained from the skins of grapes and other fruits and berries. RES may extend human lifespan by activating the sirtuins and SIRT1 molecules. CUR is isolated from the root of turmeric (Curcuma longa). CUR is currently used in the treatment of many disorders, especially in those involving an inflammatory process. CUR and modified derivatives have been shown to have potent anti-cancer effects, especially on cancer stem cells (CSC). BBR is also isolated from various plants (e.g., Coptis chinensis) and has been used for centuries in traditional medicine to treat diseases such as adult- onset diabetes. Understanding the benefits of these and other nutraceuticals may result in approaches to improve human health.


Asunto(s)
Envejecimiento/efectos de los fármacos , Suplementos Dietéticos , Neoplasias/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Línea Celular Tumoral , Humanos
20.
J Ethnopharmacol ; 207: 100-107, 2017 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-28624363

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Propolis has been used in folk medicine since ancient times and it presented inhibitory effect on neutrophil recruitment previously. However, its effect on macrophage obtained from mice remains unclear. AIM OF THE STUDY: To demonstrate BRP effects on LPS activated peritoneal macrophage. MATERIALS AND METHODS: Peritoneal macrophages, obtained from C57BL6 mice and activated with LPS, were treated with 50-80µg/mL of crude extract of Brazilian red propolis (BRP) during 48h. Cell viability, levels of NO, 20 cytokines and expression of 360 genes were evaluated. RESULTS: BRP 60µg/mL reduced NO production by 65% without affecting the cell viability and decreased production IL1α, IL1ß, IL4, IL6, IL12p40, Il12p70, IL13, MCP1 and GM-CSF. Molecular mechanism beyond the anti-inflammatory activity may be due to BRP-effects on decreasing expression of Mmp7, Egfr, Adm, Gata3, Wnt2b, Txn1, Herpud1, Axin2, Car9, Id1, Vegfa, Hes1, Hes5, Icam1, Wnt3a, Pcna, Wnt5a, Tnfsf10, Ccl5, Il1b, Akt1, Mapk1, Noxa1 and Cdkn1b and increasing expression of Cav1, Wnt6, Calm1, Tnf, Rb1, Socs3 and Dab2. CONCLUSIONS: Therefore, BRP has anti-inflammatory effects on macrophage activity by reducing NO levels and diminished release and expression of pro-inflammatory cytokine and genes, respectively.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Macrófagos Peritoneales/efectos de los fármacos , Óxido Nítrico/metabolismo , Própolis/farmacología , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Brasil , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Lipopolisacáridos/administración & dosificación , Macrófagos Peritoneales/metabolismo , Ratones , Ratones Endogámicos C57BL , Própolis/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...