Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Breast Cancer Res ; 23(1): 102, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34736512

RESUMEN

PURPOSE: Accumulating evidence has attracted attention to the androgen receptor (AR) as a biomarker and therapeutic target in breast cancer. We hypothesized that AR activity within the tumor has clinical implications and investigated whether androgen responsive serum factors might serve as a minimally invasive indicator of tumor AR activity. METHODS: Based on a comprehensive gene expression analysis of an AR-positive, triple negative breast cancer patient-derived xenograft (PDX) model, 163 dihydrotestosterone (DHT)-responsive genes were defined as an androgen responsive gene set. Among them, we focused on genes that were DHT-responsive that encode secreted proteins, namely KLK3, AZGP1 and PIP, that encode the secreted factors prostate specific antigen (PSA), zinc-alpha-2-glycoprotein (ZAG) and prolactin induced protein (PIP), respectively. Using AR-positive breast cancer cell lines representing all breast cancer subtypes, expression of candidate factors was assessed in response to agonist DHT and antagonist enzalutamide. Gene set enrichment analysis (GSEA) was performed on publically available gene expression datasets from breast cancer patients to analyze the relationship between genes encoding the secreted factors and other androgen responsive gene sets in each breast cancer subtype. RESULTS: Anti-androgen treatment decreased proliferation in all cell lines tested representing various tumor subtypes. Expression of the secreted factors was regulated by AR activation in the majority of breast cancer cell lines. In GSEA, the candidate genes were positively correlated with an androgen responsive gene set across breast cancer subtypes. CONCLUSION: KLK3, AZGP1 and PIP are AR regulated and reflect tumor AR activity. Further investigations are needed to examine the potential efficacy of these factors as serum biomarkers.


Asunto(s)
Adipoquinas/metabolismo , Neoplasias de la Mama/metabolismo , Calicreínas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Antígeno Prostático Específico/metabolismo , Receptores Androgénicos/metabolismo , Adipoquinas/genética , Antagonistas de Receptores Androgénicos/farmacología , Andrógenos/farmacología , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Calicreínas/genética , Masculino , Proteínas de Transporte de Membrana/genética , Ratones , Antígeno Prostático Específico/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Endocrinology ; 162(2)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33294922

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive subtype with peak recurrence as metastatic disease within the first few years of diagnosis. Androgen receptor (AR) expression is increased in anchorage-independent cells in TNBC preclinical models. Both AR knockdown and inhibition lead to reduced TNBC invasion in vitro, reduced tumorigenicity, and less recurrence in vivo in preclinical models. Transforming growth factor ß (TGFß) pathway gene signatures also increased during anchorage-independent survival both in vitro and in vivo in preclinical models and in circulating tumor cells (CTCs) from patients during emergence of chemo resistant disease. We hypothesized that a positive loop between AR and TGFß signaling facilitates TNBC anchorage-independent survival. We find that multiple components of the TGFß pathway, including TGFß1 and 3, as well as pathway activity measured by nuclear localization and transcriptional activity of phosphorylated Smad3, are enhanced in anchorage-independent conditions. Further, exogenous TGFß increased AR protein while TGFß inhibition decreased AR and TNBC viability, particularly under anchorage-independent culture conditions. ChIP-seq experiments revealed AR binding to TGFB1 and SMAD3 regulatory regions in MDA-MB-453 cells. In clinical datasets, TGFB3 and AR positively correlate and high expression of both genes together corresponded to significantly worse recurrence-free and overall survival in both ER-negative and basal-like breast cancer. Finally, inhibiting both AR and TGFß decreased cell survival, particularly under anchorage-independent conditions. These findings warrant further investigations into whether combined inhibition of AR and TGFß pathways might decrease metastatic recurrence rates and mortality from TNBC.


Asunto(s)
Anoicis , Recurrencia Local de Neoplasia/etiología , Receptores Androgénicos/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Retroalimentación Fisiológica , Humanos , Neoplasias de la Mama Triple Negativas/mortalidad
3.
Cancer Res ; 81(3): 732-746, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33184106

RESUMEN

Mutations in ESR1 that confer constitutive estrogen receptor alpha (ER) activity in the absence of ligand are acquired by ≥40% of metastatic breast cancers (MBC) resistant to adjuvant aromatase inhibitor (AI) therapy. To identify targetable vulnerabilities in MBC, we examined steroid hormone receptors and tumor-infiltrating immune cells in metastatic lesions with or without ER mutations. ER and progesterone receptor (PR) were significantly lower in metastases with wild-type (WT) ER compared with those with mutant ER, suggesting that metastases that evade AI therapy by mechanism(s) other than acquiring ER mutations lose dependency on ER and PR. Metastases with mutant ER had significantly higher T regulatory and Th cells, total macrophages, and programmed death ligand-1 (PD-L1)-positive immune-suppressive macrophages than those with WT ER. Breast cancer cells with CRISPR-Cas9-edited ER (D538G, Y537S, or WT) and patient-derived xenografts harboring mutant or WT ER revealed genes and proteins elevated in mutant ER cells, including androgen receptor (AR), chitinase-3-like protein 1 (CHI3L1), and IFN-stimulated genes (ISG). Targeting these proteins blunted the selective advantage of ER-mutant tumor cells to survive estrogen deprivation, anchorage independence, and invasion. Thus, patients with mutant ER MBC might respond to standard-of-care fulvestrant or other selective ER degraders when combined with AR or CHI3L1 inhibition, perhaps with the addition of immunotherapy. SIGNIFICANCE: Targetable alterations in MBC, including AR, CHI3L1, and ISG, arise following estrogen-deprivation, and ER-mutant metastases may respond to immunotherapies due to elevated PD-L1+ macrophages.See related article by Arnesen et al., p. 539.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/genética , Fulvestrant/farmacología , Expresión Génica , Humanos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...