Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 12(29): 15652-15662, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32496493

RESUMEN

In this work, we identify and characterize a new intriguing capability of carboxylated cellulose nanofibrils that could be exploited to design smart nanomaterials with tuned response properties for specific applications. Cellulose nanofibrils undergo a multivalent counter-ion induced re-entrant behavior at a specific multivalent metal salt concentration. This effect is manifested as an abrupt increase in the strength of the hydrogel that returns upon a further increment of salt concentration. We systematically study this phenomenon using dynamic light scattering, small-angle X-ray scattering, and molecular dynamics simulations based on a reactive force field. We find that the transitions in the nanofibril microstructure are mainly because of the perturbing actions of multivalent metal ions that induce conformational changes of the nanocellulosic chains and thus new packing arrangements. These new aggregation states also cause changes in the thermal and mechanical properties as well as wettability of the resulting films, upon water evaporation. Our results provide guidelines for the fabrication of cellulose-based films with variable properties by the simple addition of multivalent ions.

2.
RSC Adv ; 10(60): 36459-36466, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35517959

RESUMEN

A novel template-free colloidal assembly method that combines colloidal zeolite (silicalite-1) suspensions in a water-in-oil emulsion with an evaporation-induced assembly process has been developed for preparing hierarchical micro-/mesoporous zeolite microspheres (MZMs). Such particles have an interconnected mesoporosity and large mesopore diameters (25-40 nm) combined with 5.5 Å diameter micropores of the zeolite nanoparticles. The method developed has the advantages of employing mild synthesis conditions, a short preparation time, and not requiring the use of a mesoporogen template or post-treatment methods. The method provides a new range of micro-/mesoporous zeolites with tunable mesoporosity dictated by the size of the zeolite nanoparticles. It also offers the possibility of combining several zeolite particle sizes or optionally adding amorphous silica nanoparticles to tune the mesopore size distribution further. It should be generally applicable to other types of colloidal zeolite suspensions (e.g. ZSM-5, zeolite A, beta) and represents a new route amenable for cost-effective scale-up.

3.
ACS Omega ; 4(18): 17662-17671, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31681872

RESUMEN

Doping carbon materials with transition metal ions can greatly expand their utility, given these metal ions' unique catalytic activity, for example, in oxygen reduction in proton exchange membrane fuel cells. Unlike main group dopants, a counter anion to the metal cation must be selected and this choice has hitherto received little attention for this synthesis method. Herein, we describe the profound effects that the anion has on the resultant iron/nitrogen-doped ordered mesoporous carbons (Fe-OMC). To increase the iron loading and the number of iron-centered catalytically active sites, we selected three iron salts Fe(OAc)2, Fe(OTf)2, and Fe(BF4)2·6H2O, which show greatly enhanced solubility in the liquid carbon precursor (furfurylamine) compared to FeCl3·6H2O. The increased solubility leads to a significantly higher iron loading in the Fe-OMC prepared with Fe(OTf)2, but the increase in performance as cathode catalysts in fuel cells is only marginal. The Fe-OMCs prepared with Fe(OAc)2 and Fe(BF4)2·6H2O exhibited similar or lower iron loadings compared to the Fe-OMC prepared with FeCl3·6H2O despite their much higher solubilities. Most importantly, the different iron salts affect not only the final iron loading, but also which type of iron species forms in the Fe-OMC with different types showing different catalytic activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...