Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Medicina (Kaunas) ; 58(10)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36295596

RESUMEN

Background and Objectives: Perilipins 1-5 (PLIN) are lipid droplet-associated proteins that participate in regulating lipid storage and metabolism, and the PLIN5 isoform is known to form a nuclear complex with peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) to regulate lipid metabolism gene expression. However, the changes in PLIN isoforms' expression in response to pregnancy-induced cardiac hypertrophy are not thoroughly studied. The aim of this study was to quantify the mRNA expression of PLIN isoforms and PGC-1α along with total triacylglycerol (TAG) and cholesterol levels during late pregnancy and the postpartum period in the rat left ventricle. Materials and Methods: Female Sprague-Dawley rats were divided into three groups: non-pregnant, late pregnancy, and postpartum. The mRNA and protein levels were evaluated using quantitative RT-PCR and Western blotting, respectively. TAG and total cholesterol content were evaluated using commercial colorimetric methods. Results: The expression of mRNAs for PLIN1, 2, and 5 increased during pregnancy and the postpartum period. PGC-1α mRNA and protein expression increased during pregnancy and the postpartum period. Moreover, TAG and total cholesterol increased during pregnancy and returned to basal levels after pregnancy. Conclusions: Our results demonstrate that pregnancy upregulates differentially the expression of PLIN isoforms along with PGC-1α, suggesting that together they might be involved in the regulation of the lipid metabolic shift induced by pregnancy.


Asunto(s)
Receptores Activados del Proliferador del Peroxisoma , Factores de Transcripción , Ratas , Femenino , Animales , Embarazo , Perilipina-1 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Ratas Sprague-Dawley , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Triglicéridos , Colesterol
2.
Genes (Basel) ; 13(5)2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35627302

RESUMEN

The major histocompatibility complex (MHC) enables vertebrates to cope with pathogens and maintain healthy populations, thus making it a unique set of loci for addressing ecology and evolutionary biology questions. The aim of our study was to examine the variability of Heermann's Gull MHC class II (MHCIIB) and compare these loci with other Charadriiformes. Fifty-nine MHCIIB haplotypes were recovered from sixty-eight Heermann's Gulls by cloning, of them, twelve were identified as putative true alleles, forty-five as unique alleles, and two as pseudogenes. Intra and interspecific relationships indicated at least two loci in Heermann's Gull MHCIIB and trans-species polymorphism among Charadriiformes (coinciding with the documented evidence of two ancient avian MHCIIB lineages, except in the Charadriidae family). Additionally, sites under diversifying selection revealed a better match with peptide-binding sites inferred in birds than those described in humans. Despite the negative anthropogenic activity reported on Isla Rasa, Heermann's Gull showed MHCIIB variability consistent with population expansion, possibly due to a sudden growth following conservation efforts. Duplication must play an essential role in shaping Charadriiformes MHCIIB variability, buffering selective pressures through balancing selection. These findings suggest that MHC copy number and protected islands can contribute to seabird conservation.


Asunto(s)
Charadriiformes , Animales , Aves/genética , Charadriiformes/genética , Genes MHC Clase II/genética , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Filogenia , Selección Genética
3.
Life Sci ; 285: 119943, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34516992

RESUMEN

Glycine betaine (N, N, N-trimethyl amine) is an osmolyte accumulated in cells that is key for cell volume and turgor regulation, is the principal methyl donor in the methionine cycle and is a DNA and proteins stabilizer. In humans, glycine betaine is synthesized from choline and can be obtained from some foods. Glycine betaine (GB) roles are illustrated in chemical, metabolic, agriculture, and clinical medical studies due to its chemical and physiological properties. Several studies have extensively described GB role and accumulation related to specific pathologies, focusing mainly on analyzing its positive and negative role in these pathologies. However, it is necessary to explain the relationship between glycine betaine and different pathologies concerning its role as an antioxidant, ability to methylate DNA, interact with transcription factors and cell receptors, and participate in the control of homocysteine concentration in liver, kidney and brain. This review summarizes the most important findings and integrates GB role in neurodegenerative, cardiovascular, hepatic, and renal diseases. Furthermore, we discuss GB impact on other dysfunctions as inflammation, oxidative stress, and glucose metabolism, to understand their cross-talks and provide reliable data to establish a base for further investigations.


Asunto(s)
Betaína/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Renales/metabolismo , Hepatopatías/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Tamaño de la Célula , Humanos , Hiperhomocisteinemia/metabolismo , Concentración Osmolar , S-Adenosilmetionina/metabolismo
4.
Luminescence ; 36(7): 1733-1742, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34213071

RESUMEN

Glycine betaine is the main osmolyte synthesized and accumulated in mammalian renal cells. Glycine betaine synthesis is catalyzed by the enzyme betaine aldehyde dehydrogenase (BADH) using NAD+ as the coenzyme. Previous studies have shown that porcine kidney betaine aldehyde dehydrogenase (pkBADH) binds NAD+ with different affinities at each active site and that the binding is K+ dependent. The objective of this work was to analyze the changes in the pkBADH secondary and tertiary structure resulting from variable concentrations of NAD+ and the role played by K+ . Intrinsic fluorescence studies were carried out at fixed-variable concentrations of K+ and titrating the enzyme with varying concentrations of NAD+ . Fluorescence analysis showed a shift of the maximum emission towards red as the concentration of K+ was increased. Changes in the exposure of tryptophan located near the NAD+ binding site were found when the enzyme was titrated with NAD+ in the presence of potassium. Fluorescence data analysis showed that the K+ presence promoted static quenching that facilitated the pkBADH-NAD+ complex formation. DC data analysis showed that binding of K+ to the enzyme caused changes in the α-helix content of 4% and 12% in the presence of 25 mM and 100 mM K+ , respectively. The presence of K+ during NAD+ binding to pkBADH increased the thermal stability of the complex. These results indicated that K+ facilitated the pkBADH-NAD+ complex formation and suggested that K+ caused small changes in secondary and tertiary structures that could influence the active site conformation.


Asunto(s)
Betaína Aldehído Deshidrogenasa , Potasio , Animales , Betaína Aldehído Deshidrogenasa/metabolismo , Sitios de Unión , Coenzimas , Cinética , Conformación Molecular , Porcinos
5.
Mol Cell Biochem ; 476(3): 1467-1475, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33389495

RESUMEN

The enzyme betaine aldehyde dehydrogenase (BADH EC 1.2.1.8) catalyzes the synthesis of glycine betaine (GB), an osmolyte and osmoprotectant. Also, it participates in several metabolic pathways in humans. All BADHs known have cysteine in the active site involved in the aldehyde binding, whereas the porcine kidney enzyme (pkBADH) also has a neighborhood cysteine, both sensitive to oxidation. The antineoplastic and immuno-suppressant pre-drug cyclophosphamide (CTX), and its bioactivation products, have two highly oxidating chlorine atoms. This work aimed to analyze the effect of CTX in the activity of porcine kidney betaine aldehyde dehydrogenase. PkBADH was incubated with varying CTX concentration (0 to 2.0 mM) at 25 °C and lost 50 % of its activity with 2.0 mM CTX. The presence of the coenzyme NAD+ (0.5 mM) decreased 95% the activity in 2.0 mM CTX. The substrate betaine aldehyde (0.05 and 0.4 mM, and the products NADH (0.1-0.5 mM) and GB (1 and 10 mM) did not have an effect on the enzyme inactivation by CTX. The reducing agents, dithiothreitol and ß-mercaptoethanol, reverted the pkBADH inactivation, but reduced glutathione (GSH) was unable to restore the enzyme activity. Molecular docking showed that CTX could enter at the enzyme active site, where its chlorine atoms may interact with the catalytic and the neighboring cysteines. The results obtained show that CTX inactivates the pkBADH due to oxidation of the catalytic cysteine or because it oxidizes catalytic and neighborhood cysteine, forming a disulfide bridge with a concomitant decrease in the activity of the enzyme.


Asunto(s)
Betaína Aldehído Deshidrogenasa/metabolismo , Ciclofosfamida/farmacología , Riñón/metabolismo , Animales , Betaína/análogos & derivados , Catálisis , Dominio Catalítico , Cloro/química , Ciclofosfamida/química , Cisteína/química , Disulfuros , Ditiotreitol/química , Escherichia coli/metabolismo , Cinética , Ligandos , Mercaptoetanol/química , Modelos Moleculares , Conformación Molecular , Simulación del Acoplamiento Molecular , Oxidación-Reducción , Oxígeno/química , Preparaciones Farmacéuticas/metabolismo , Conformación Proteica , Sustancias Reductoras/química , Porcinos
6.
J Mol Recognit ; 33(10): e2869, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32881113

RESUMEN

Betaine aldehyde dehydrogenase (BADH EC 1.2.1.8) catalyzes the irreversible oxidation of betaine aldehyde to glycine betaine using NAD+ as a coenzyme. Porcine kidney BADH (pkBADH) follows a bi-bi ordered mechanism in which NAD+ binds to the enzyme before the aldehyde. Previous studies showed that NAD+ induces complex and unusual conformational changes on pkBADH and that potassium is required to maintain its quaternary structure. The aim of this work was to analyze the structural changes in pkBADH caused by NAD+ binding and the role played by potassium in those changes. The pkBADH cDNA was cloned and overexpressed in Escherichia coli, and the protein was purified by affinity chromatography using a chitin matrix. The pkBADH/NAD+ interaction was analyzed by circular dichroism (CD) and by isothermal titration calorimetry (ITC) by titrating the enzyme with NAD+ . The cDNA has an open reading frame of 1485 bp and encodes a protein of 494 amino acids, with a predicted molecular mass of 53.9 kDa. CD data showed that the binding of NAD+ to the enzyme caused changes in its secondary structure, whereas the presence of K+ helps maintain its α-helix content. K+ increased the thermal stability of the pkBADH-NAD+ complex by 5.3°C. ITC data showed that NAD+ binding occurs with different association constants for each active site between 37.5 and 8.6 µM. All the results support previous data in which the enzyme incubation with NAD+ provoked changes in reactivity, which is an indication of slow conformational rearrangements of the active site.


Asunto(s)
Betaína Aldehído Deshidrogenasa/metabolismo , Dominio Catalítico , Riñón/enzimología , Potasio/metabolismo , Secuencia de Aminoácidos , Animales , Betaína Aldehído Deshidrogenasa/química , Concentración de Iones de Hidrógeno , Conformación Proteica , Alineación de Secuencia , Sus scrofa/metabolismo , Temperatura
7.
J Bioenerg Biomembr ; 52(2): 61-70, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32128683

RESUMEN

Betaine aldehyde dehydrogenase (BADH) catalyzes the oxidation of betaine aldehyde to glycine betaine using NAD+ as a coenzyme. Studies in porcine kidney BADH (pkBADH) suggested that the enzyme exhibits heterogeneity of active sites and undergoes potassium-induced conformational changes. This study aimed to analyze if potassium concentration plays a role in the heterogeneity of pkBADH active sites through changes in NAD+ affinity constants, in its secondary structure content and stability. The enzyme was titrated with NAD+ 1 mM at fixed-variable KCl concentration, and the interaction measured by Isothermal Titration Calorimetry (ITC) and Circular Dichroism (CD). ITC data showed that K+ increased the first active site affinity in a manner dependent on its concentration; KD values to the first site were 14.4, 13.1, and 10.4 µM, at 25, 50, and 75 mM KCl. ΔG values showed that the coenzyme binding is a spontaneous reaction without changes between active sites or depending on KCl concentration. ΔH and TΔSb values showed that NAD+ binding to the active site is an endothermic process and is carried out at the expense of changes in entropy. α-Helix content increased as KCl increased, enzyme (Tm)app values were 2.6 °C and 3.3 °C higher at 20 mM and 200 mM K+. PkBADH molecular model showed three different interaction K+ sites. Results suggested K+ can interact with pkBADH and cause changes in the secondary structure, it provokes changes in the enzyme affinity by the coenzyme, and in the thermostability.


Asunto(s)
Betaína Aldehído Deshidrogenasa/metabolismo , NAD/metabolismo , Potasio/metabolismo , Sitios de Unión , Modelos Moleculares
8.
Artículo en Inglés | MEDLINE | ID: mdl-31790808

RESUMEN

In marine animals, glycine betaine is one of the main osmolytes accumulated under osmotic stress conditions; nevertheless, in penaeids, shrimps little is known about the pathways involved in glycine betaine biosynthesis. In animal cells, glycine betaine is synthesized by the enzyme betaine aldehyde dehydrogenase (BADH). We herein investigated the salinity effect on the synthesis and concentration of glycine betaine on white shrimp Litopenaeus vannamei. Shrimps were subjected to 10, 20, 35, 40, 50, and 60 ppt salinity conditions for seven days. BADH activity increased in hepatopancreas and gills of shrimps subjected to salinities above 35 ppt salinity. In muscle, the BADH activity decreased at 35 ppt salinity. In hepatopancreas from shrimps subjected to 50 and 60 ppt salinities, BADH activity increased 1.1 and 1.7-fold. At 60 ppt salinity, BADH activity increased 1.5-fold respect to 35 ppt in gills. Glycine betaine concentration increased in hepatopancreas, gills, muscle, and hemolymph in shrimps subjected to salinities above 35 ppt. Glycine betaine concentration also increased at 20 ppt salinity, while at 10 ppt, not detected significant differences. The catch of glycine betaine from hemolymph by the cell likely is carried out to avoid protein denaturalization. Ammonia concentration in the aquarium's water only increased at salinities of 20 ppt and 10 ppt (1.1-fold relative to 35 ppt). Our data demonstrated that in L. vannamei, salinity regulates BADH activity and glycine betaine content in a tissue-specific manner.


Asunto(s)
Betaína Aldehído Deshidrogenasa/metabolismo , Betaína/metabolismo , Osmorregulación , Presión Osmótica , Penaeidae/metabolismo , Salinidad , Animales , Hemolinfa/metabolismo , Hepatopáncreas/metabolismo , Penaeidae/efectos de los fármacos
9.
Artículo en Inglés | MEDLINE | ID: mdl-30041062

RESUMEN

Hypoxia inducible factor-1 (HIF-1) is a transcriptional factor that induces genes involved in glucose metabolism. HIF-1 is formed by a regulatory α-subunit (HIF-1α) and a constitutive ß-subunit (HIF-1ß). The white spot syndrome virus (WSSV) induces a shift in glucose metabolism and oxidative stress. HIF-1α is associated with the induction of metabolic changes in tissues of WSSV-infected shrimp. However, the contributions of HIF-1 to viral load and antioxidant responses in WSSV-infected shrimp have been not examined. In this study, the effect of HIF-1 silencing on viral load and the expression and activity of antioxidant enzymes (superoxide dismutase-SOD, glutathione S-transferase-GST, and catalase) along with oxidative damage (lipid peroxidation and protein carbonyl) in tissues of white shrimp infected with the WSSV were studied. The viral load increased in hepatopancreas and muscle after WSSV infection, and the accumulative mortality was of 100% at 72 h post-infection. The expression and activity of SOD, catalase, and GST decreased in each tissue evaluated after WSSV infection. Protein carbonyl concentrations increased in each tissue after WSSV infection, while lipid peroxidation increased in hepatopancreas, but not in muscle. Silencing of HIF-1α decreased the WSSV viral load in hepatopancreas and muscle of infected shrimp along with shrimp mortality. Silencing of HIF-1α ameliorated the antioxidant response in a tissue-specific manner, which translated to a decrease in oxidative damage. These results suggest that HIF-1 is essential for restoring the antioxidant response, which counters the oxidative injury associated with WSSV infection.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Penaeidae/virología , Virus del Síndrome de la Mancha Blanca 1/patogenicidad , Animales , Acuicultura , ADN Viral/aislamiento & purificación , Silenciador del Gen , Hepatopáncreas/crecimiento & desarrollo , Hepatopáncreas/metabolismo , Hepatopáncreas/virología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inyecciones Intramusculares , Peroxidación de Lípido , México , Músculos/metabolismo , Músculos/virología , Especificidad de Órganos , Estrés Oxidativo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Penaeidae/crecimiento & desarrollo , Penaeidae/metabolismo , Carbonilación Proteica , Interferencia de ARN , ARN Bicatenario/administración & dosificación , ARN Bicatenario/metabolismo , Carga Viral , Virus del Síndrome de la Mancha Blanca 1/aislamiento & purificación , Virus del Síndrome de la Mancha Blanca 1/fisiología
10.
Chem Biol Interact ; 276: 65-74, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28212821

RESUMEN

The enzyme betaine aldehyde dehydrogenase (BADH) catalyzes the irreversible oxidation of betaine aldehyde to glycine betaine (GB), a very efficient osmolyte accumulated during osmotic stress. In this study, we determined the nucleotide sequence of the cDNA for the BADH from the white shrimp Litopenaeus vannamei (LvBADH). The cDNA was 1882 bp long, with a complete open reading frame of 1524 bp, encoding 507 amino acids with a predicted molecular mass of 54.15 kDa and a pI of 5.4. The predicted LvBADH amino acid sequence shares a high degree of identity with marine invertebrate BADHs. Catalytic residues (C-298, E-264 and N-167) and the decapeptide VTLELGGKSP involved in nucleotide binding and highly conserved in BADHs were identified in the amino acid sequence. Phylogenetic analyses classified LvBADH in a clade that includes ALDH9 sequences from marine invertebrates. Molecular modeling of LvBADH revealed that the protein has amino acid residues and sequence motifs essential for the function of the ALDH9 family of enzymes. LvBADH modeling showed three potential monovalent cation binding sites, one site is located in an intra-subunit cavity; other in an inter-subunit cavity and a third in a central-cavity of the protein. The results show that LvBADH shares a high degree of identity with BADH sequences from marine invertebrates and enzymes that belong to the ALDH9 family. Our findings suggest that the LvBADH has molecular mechanisms of regulation similar to those of other BADHs belonging to the ALDH9 family, and that BADH might be playing a role in the osmoregulation capacity of L. vannamei.


Asunto(s)
Betaína Aldehído Deshidrogenasa/metabolismo , Betaína/metabolismo , Modelos Moleculares , Penaeidae/enzimología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Betaína Aldehído Deshidrogenasa/clasificación , Betaína Aldehído Deshidrogenasa/genética , Sitios de Unión , Biocatálisis , Clonación Molecular , Humanos , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia
11.
Gene ; 591(2): 376-81, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27312951

RESUMEN

Hypoxia inducible factor 1-α (HIF-1α) and peroxisome proliferator-activated receptor γ (PPARγ) are transcription factors that activate genes involved in cellular metabolism. Physiological cardiac hypertrophy induced by pregnancy initiates compensatory changes in metabolism. However, the contributions of HIF-1α and PPARγ to this physiological status and to its reversible, metabolic process (postpartum) in the heart are not well-defined. Therefore, the aim of the present study was to evaluate the transcriptional activities of HIF-1α and PPARγ in the left ventricle of rats before, during, and after pregnancy. Furthermore, the effects of pregnancy on target genes of glycolysis and glycerol-lipid biosynthesis, key regulatory enzymes, and metabolic intermediates were evaluated. The activities of HIF-1α and PPARγ increased 1.2- and 1.6-fold, respectively, during pregnancy, and decreased to basal levels during postpartum. Expressions of mRNA for glucose transport 1 (GLUT1), enzymes of glycolysis (HK2, PFKM, and GAPDH) and glycerol-lipid biosynthesis (GPAT and GPD1) increased 1.6- to 14-fold during pregnancy and returned to basal levels postpartum. The increase in GPD1 expression translated to an increase in its activity, but such was not the case for GAPDH suggesting that post-translational regulation of these proteins is differential during pregnancy. Glycolytic (glucose, lactate, and DHAP) and glycerol-lipid biosynthesis (G3P and FFA) intermediates increased with pregnancy and were maintained postpartum. The results demonstrate that pregnancy-induced, physiological cardiac hypertrophy activates the expression of genes involved in glycolytic and glycerol-lipid biosynthesis suggesting that the shift in cardiac metabolism is mediated by the activation of HIF-1α and PPARγ.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , PPAR gamma/genética , Preñez/fisiología , Animales , Femenino , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Glicerol-3-Fosfato Deshidrogenasa (NAD+)/metabolismo , Ventrículos Cardíacos/enzimología , Ventrículos Cardíacos/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Tamaño de los Órganos , PPAR gamma/metabolismo , Embarazo , ARN Mensajero , Ratas , Ratas Sprague-Dawley , Transcripción Genética
12.
Artículo en Inglés | MEDLINE | ID: mdl-26219579

RESUMEN

Crustaceans overcome osmotic disturbances by regulating their intracellular concentration of ions and osmolytes. Glycine betaine (GB), an osmolyte accumulated in response to hyperosmotic stress, is synthesized by betaine aldehyde dehydrogenase (BADH EC 1.2.1.8) through the oxidation of betaine aldehyde. A partial BADH cDNA sequence from the white shrimp Litopenaeus vannamei was obtained and its organ-specific expression during osmotic stress (low and high salinity) was evaluated. The partial BADH cDNA sequence (LvBADH) is 1103bp long and encodes an open reading frame for 217 protein residues. The amino acid sequence of LvBADH is related to that of other BADHs, TMABA-DH and ALDH9 from invertebrate and vertebrate homologues, and includes the essential domains of their function and regulation. LvBADH activity and mRNA expression were detected in the gills, hepatopancreas and muscle with the highest levels in the hepatopancreas. LvBADH mRNA expression increased 2-3-fold in the hepatopancreas and gills after 7days of osmotic variation (25 and 40ppt). In contrast, LvBADH mRNA expression in muscle decreased 4-fold and 15-fold after 7days at low and high salinity, respectively. The results indicate that LvBADH is ubiquitously expressed, but its levels are organ-specific and regulated by osmotic stress, and that LvBADH is involved in the cellular response of crustaceans to variations in environmental salinity.


Asunto(s)
Betaína Aldehído Deshidrogenasa/genética , Betaína Aldehído Deshidrogenasa/metabolismo , Decápodos/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Betaína Aldehído Deshidrogenasa/química , ADN Complementario/química , ADN Complementario/genética , Decápodos/enzimología , Decápodos/metabolismo , Datos de Secuencia Molecular , Especificidad de Órganos , Presión Osmótica , ARN Mensajero/metabolismo
13.
Chem Biol Interact ; 191(1-3): 159-64, 2011 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-21296058

RESUMEN

Concentrated urine formation in the kidney is accompanied by conditions that favor the accumulation of reactive oxygen species (ROS). Under hyperosmotic conditions, medulla cells accumulate glycine betaine, which is an osmolyte synthesized by betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8). All BADHs identified to date have a highly reactive cysteine residue at the active site, and this cysteine is susceptible to oxidation by hydrogen peroxide. Porcine kidney BADH incubated with H(2)O(2) (0-500 µM) lost 25% of its activity. However, pkBADH inactivation by hydrogen peroxide was limited, even after 120 min of incubation. The presence of coenzyme NAD(+) (10-50 µM) increased the extent of inactivation (60%) at 120 min of reaction, but the ligands betaine aldehyde (50 and 500 µM) and glycine betaine (100 mM) did not change the rate or extent of inactivation as compared to the reaction without ligand. 2-Mercaptoethanol and dithiothreitol, but not reduced glutathione, were able to restore enzyme activity. Mass spectrometry analysis of hydrogen peroxide inactivated BADH revealed oxidation of M278, M243, M241 and H335 in the absence and oxidation of M94, M327 and M278 in the presence of NAD(+). Molecular modeling of BADH revealed that the oxidized methionine and histidine residues are near the NAD(+) binding site. In the presence of the coenzyme, these oxidized residues are proximal to the betaine aldehyde binding site. None of the oxidized amino acid residues participates directly in catalysis. We suggest that pkBADH inactivation by hydrogen peroxide occurs via disulfide bond formation between vicinal catalytic cysteines (C288 and C289).


Asunto(s)
Betaína Aldehído Deshidrogenasa/metabolismo , Peróxido de Hidrógeno/farmacología , Riñón/enzimología , Animales , Betaína Aldehído Deshidrogenasa/química , Activación Enzimática/efectos de los fármacos , Reactivadores Enzimáticos/farmacología , Estabilidad de Enzimas/efectos de los fármacos , Cinética , Ligandos , Modelos Moleculares , Conformación Proteica , Porcinos
14.
Life Sci ; 87(17-18): 515-20, 2010 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-20727361

RESUMEN

Kidney medulla cells are exposed to a wide range of changes in the ionic and osmotic composition of their environment as a consequence of the urine concentrating mechanism. During antidiuresis NaCl and urea concentrations increase and an efficient urinary concentrating mechanism is accompanied by medullar hypoxia. Medullar hypotonicity increases reactive oxygen species, a byproduct of mitochondria during ATP production. High intracellular ionic strength, hypoxia and elevated ROS concentration would have deleterious effects on medulla cell function. Medulla cells respond to hypertonicity by accumulating organic osmolytes, such as glycine betaine, glycerophosphorylcholine, sorbitol, inositol, and taurine, the main functions of which are osmoregulation and osmoprotection. The accumulation of compatible osmolytes is thus crucial for the viability of renal medulla cells. Studies about the effects of reactive oxygen species (ROS) on the enzymes involved in the synthesis of osmolytes are scarce. In this review we summarize the information available on the effects of ROS on the enzymes involved in osmolyte synthesis in kidney.


Asunto(s)
Médula Renal/citología , Médula Renal/enzimología , Estrés Oxidativo/fisiología , Equilibrio Hidroelectrolítico/fisiología , Aldehído Reductasa/metabolismo , Animales , Betaína/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo
15.
Redox Rep ; 15(6): 282-7, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21208528

RESUMEN

Renal hyperosmotic conditions may produce reactive oxygen species, which could have a deleterious effect on the enzymes involved in osmoregulation. Hydrogen peroxide was used to provoke oxidative stress in the environment of betaine aldehyde dehydrogenase in vitro. Enzyme activity was reduced as hydrogen peroxide concentration was increased. Over 50% of the enzyme activity was lost at 100 µM hydrogen peroxide at two temperatures tested. At pH 8.0, under physiological ionic strength conditions, peroxide inhibited the enzyme. Initial velocity assays of betaine aldehyde dehydrogenase in the presence of hydrogen peroxide (0-200 µM) showed noncompetitive inhibition with respect to NAD(+) or to betaine aldehyde at saturating concentrations of the other substrate at pH 7.0 or 8.0. Inhibition data showed that apparent V(max) decreased 40% and 26% under betaine aldehyde and NAD(+) saturating concentrations at pH 8.0, while at pH 7.0 V(max) decreased 40% and 29% at betaine aldehyde and NAD(+) saturating concentrations. There was little change in apparent Km(NAD) at either pH, while Km(BA) increased at pH 7.0. K(i) values at pH 8 and 7 were calculated. Our results suggest that porcine kidney betaine aldehyde dehydrogenase could be inhibited by hydrogen peroxide in vivo, thus compromising the synthesis of glycine betaine.


Asunto(s)
Betaína Aldehído Deshidrogenasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Riñón/enzimología , Animales , Activación Enzimática/efectos de los fármacos , Concentración de Iones de Hidrógeno , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA