Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38645195

RESUMEN

Asymmetric cell division is essential for the creation of cell types with different identities and functions. The EMS blastomere of the four-cell Caenorhabditis elegans embryo undergoes an asymmetric division in response to partially redundant signaling pathways. One pathway involves a Wnt signal emanating from the neighboring P2 cell, while the other pathway is defined by the receptor-like MES-1 protein localized at the EMS/P2 cell contact, and the cytoplasmic kinase SRC-1. In response to these pathways, the EMS nuclear-centrosome complex rotates so that the spindle forms on the anterior-posterior axis; after division, the daughter cell contacting P2 becomes the endodermal precursor cell. Here we identify the Rac1 homolog, CED-10, as a new component of the MES-1/SRC-1 pathway. Loss of CED-10 affects both spindle positioning and endoderm specification. Although MES-1 is still present at the EMS/P2 contact in ced-10 embryos, SRC-1 dependent phosphorylation is reduced. These and other results suggest that CED-10 acts downstream of MES-1 and upstream of, or at the level of, SRC-1 activity. In addition, we find that the branched actin regulator ARX-2 is enriched at the EMS/P2 cell contact site, in a CED-10 dependent manner. Loss of ARX-2 results in spindle positioning defects, suggesting that CED-10 acts through branched actin to promote the asymmetric division of the EMS cell.

2.
Dev Biol ; 500: 40-54, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37263374

RESUMEN

Asymmetric cell divisions, where cells divide with respect to a polarized axis and give rise to daughter cells with different fates, are critically important for development. In many such divisions, the conserved PAR polarity proteins accumulate in distinct cortical domains in response to a symmetry breaking cue. The one-cell C. elegans embryo is a paradigm for understanding mechanisms of PAR polarization, but much less is known about polarity in subsequent divisions. Here, we investigate the polarization of the P1 cell of the two-cell embryo. A posterior PAR-2 domain forms in the first 4 â€‹min, and polarization becomes stronger over time. Initial polarization depends on the PAR-1 and PKC-3 kinases, and the downstream polarity regulators MEX-5 and PLK-1. However, par-1 and plk-1 mutants exhibit delayed polarization. This late polarization correlates with the time of centrosome maturation and actomyosin flow, and loss of centrosome maturation or myosin in par-1 mutant embryos causes an even stronger polarity phenotype. Based on these and other results, we propose that PAR polarity in the P1 cell is generated by at least two redundant mechanisms: There is a novel early pathway dependent on PAR-1, PKC-3 and cytoplasmic polarity, and a late pathway that resembles symmetry breaking in the one-cell embryo and requires PKC-3, centrosome associated AIR-1 and myosin flow.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Centrosoma/metabolismo , Citoesqueleto de Actina/metabolismo , División Celular Asimétrica , Polaridad Celular , Embrión no Mamífero/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
3.
Dev Biol ; 444(1): 9-19, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30213539

RESUMEN

The PAR-1 kinase of C. elegans is localized to the posterior of the one-cell embryo and its mutations affect asymmetric spindle placement and partitioning of cytoplasmic components in the first cell cycle. However, par-1 mutations do not cause failure to restrict the anterior PAR polarity complex to the same extent as mutations in the posteriorly localized PAR-2 protein. Further, it has been difficult to examine the role of PAR-1 in subsequent divisions due to the early defects in par-1 mutant embryos. Here we show that the PIG-1 kinase acts redundantly with PAR-1 to restrict the anterior PAR-3 protein for normal polarity in the one-cell embryo. By using a temperature sensitive allele of par-1, which exhibits enhanced lethality when combined with a pig-1 mutation, we have further explored roles for these genes in subsequent divisions. We find that both PIG-1 and PAR-1 regulate spindle orientation in the EMS blastomere of the four-cell stage embryo to ensure that it undergoes an asymmetric division. In this cell, PIG-1 and PAR-1 act in parallel pathways for spindle positioning, PIG-1 in the MES-1/SRC-1 pathway and PAR-1 in the Wnt pathway.


Asunto(s)
División Celular Asimétrica/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Blastómeros/fisiología , Tipificación del Cuerpo/fisiología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiología , División Celular , Linaje de la Célula , Polaridad Celular/fisiología , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Serina-Treonina Quinasas/fisiología , Huso Acromático/metabolismo
4.
Dev Cell ; 46(3): 249-251, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30086296

RESUMEN

The orientation of cell division is crucial in many developmental processes. In this issue of Developmental Cell, Sugioka and Bowerman (2018) report a myosin-dependent mechanism whereby physical contact between cells influences the division plane, with implications for understanding how cell division orientation is regulated in multicellular contexts.


Asunto(s)
División Celular , Modelos Biológicos
5.
Cell Mol Bioeng ; 11(5): 367-382, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31719890

RESUMEN

INTRODUCTION: Microbes aggregate when they display adhesive proteins on their outer membrane surfaces, which then form bridges between microbes. Aggregation protects the inner microbes from harsh environmental conditions such as high concentrations of antibiotics, high salt conditions, and fluctuations in pH. The protective effects of microbial aggregation make it an attractive target for improving the ability of probiotic strains to persist in the gut environment. However, it remains challenging to achieve synthetic microbial aggregation using natural adhesive proteins because these proteins frequently mediate microbial virulence. OBJECTIVES: Construction of synthetic proteins that mediate aggregation between microbes to enhance the survival of cells delivered to stressful environments. METHODS: We construct synthetic adhesins by fusing adhesive protein domains to surface display peptides. The resulting aggregated populations of bacteria are characterized using immunofluorescence, microscopy, flow cytometry, and quantification of colony forming units. RESULTS: We assemble a series of synthetic adhesins, demonstrate their display on the outer membrane of Escherichia coli, and show that they mediate bacterial aggregation. Further engineering of the size and motif composition of the adhesive domain shows that principles from natural adhesins can be applied to our synthetic adhesins. Finally, we show that aggregation allows E. coli cells to resist treatment with antimicrobial peptides and survive inside the gut of Caenorhabditis elegans. CONCLUSIONS: Our results demonstrate that synthetic aggregation can allow bacteria to resist biocidal environmental conditions. Synthetic adhesins may be used to facilitate microbial colonization of previously inaccessible environmental niches, either in remote natural environments or inside living organisms.

6.
Mol Biol Cell ; 28(18): 2360-2373, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28701343

RESUMEN

The anaphase spindle determines the position of the cytokinesis furrow, such that the contractile ring assembles in an equatorial zone between the two spindle poles. Contractile ring formation is mediated by RhoA activation at the equator by the centralspindlin complex and midzone microtubules. Astral microtubules also inhibit RhoA accumulation at the poles. In the Caenorhabditis elegans one-cell embryo, the astral microtubule-dependent pathway requires anillin, NOP-1, and LET-99. LET-99 is well characterized for generating the asymmetric cortical localization of the Gα-dependent force-generating complex that positions the spindle during asymmetric division. However, whether the role of LET-99 in cytokinesis is specific to asymmetric division and whether it acts through Gα to promote furrowing are unclear. Here we show that LET-99 contributes to furrowing in both asymmetrically and symmetrically dividing cells, independent of its function in spindle positioning and Gα regulation. LET-99 acts in a pathway parallel to anillin and is required for myosin enrichment into the contractile ring. These and other results suggest a positive feedback model in which LET-99 localizes to the presumptive cleavage furrow in response to the spindle and myosin. Once positioned there, LET-99 enhances myosin accumulation to promote furrowing in both symmetrically and asymmetrically dividing cells.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Anafase , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Ciclo Celular/fisiología , Proteínas Contráctiles/metabolismo , Citocinesis/fisiología , Embrión no Mamífero/metabolismo , Microtúbulos/metabolismo , Miosinas/metabolismo , Huso Acromático/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
7.
J Cell Biol ; 216(3): 543-545, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28242746

RESUMEN

How LINC complexes are regulated to connect nuclei to the cytoskeleton during nuclear migration is unknown. Saunders et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201507113) show that the AAA+ ATPase torsinA and its partner LAP1 are required for nuclear migration during fibroblast polarization by mediating the dynamics of LINC complexes.


Asunto(s)
Transporte Biológico/fisiología , Núcleo Celular/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Citoesqueleto/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo
8.
Genetics ; 204(3): 1177-1189, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27672093

RESUMEN

Asymmetric divisions produce daughter cells with different fates, and thus are critical for animal development. During asymmetric divisions, the mitotic spindle must be positioned on a polarized axis to ensure the differential segregation of cell fate determinants into the daughter cells. In many cell types, a cortically localized complex consisting of Gα, GPR-1/2, and LIN-5 (Gαi/Pins/Mud, Gαi/LGN/NuMA) mediates the recruitment of dynactin/dynein, which exerts pulling forces on astral microtubules to physically position the spindle. The conserved PAR polarity proteins are known to regulate both cytoplasmic asymmetry and spindle positioning in many cases. However, spindle positioning also occurs in response to cell signaling cues that appear to be PAR-independent. In the four-cell Caenorhabditis elegans embryo, Wnt and Mes-1/Src-1 signaling pathways act partially redundantly to align the spindle on the anterior/posterior axis of the endomesodermal (EMS) precursor cell. It is unclear how those extrinsic signals individually contribute to spindle positioning and whether either pathway acts via conserved spindle positioning regulators. Here, we genetically test the involvement of Gα, LIN-5, and their negative regulator LET-99, in transducing EMS spindle positioning polarity cues. We also examined whether the C. elegans ortholog of another spindle positioning regulator, DLG-1, is required. We show that LET-99 acts in the Mes-1/Src-1 pathway for spindle positioning. LIN-5 is also required for EMS spindle positioning, possibly through a Gα- and DLG-1-independent mechanism.


Asunto(s)
División Celular Asimétrica , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/metabolismo , Huso Acromático/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Células Madre Embrionarias/metabolismo , Guanilato-Quinasas/genética , Guanilato-Quinasas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Huso Acromático/genética
9.
Dev Biol ; 412(2): 288-297, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26921457

RESUMEN

PAR proteins play important roles in establishing cytoplasmic polarity as well as regulating spindle positioning during asymmetric division. However, the molecular mechanisms by which the PAR proteins generate asymmetry in different cell types are still being elucidated. Previous studies in Caenorhabditis elegans revealed that PAR-3 and PAR-1 regulate the asymmetric localization of LET-99, which in turn controls spindle positioning by affecting the distribution of the conserved force generating complex. In wild-type embryos, LET-99 is localized in a lateral cortical band pattern, via inhibition at the anterior by PAR-3 and at the posterior by PAR-1. In this report, we show that the 14-3-3 protein PAR-5 is also required for cortical LET-99 asymmetry. PAR-5 associated with LET-99 in pull-down assays, and two PAR-5 binding sites were identified in LET-99 using the yeast two-hybrid assay. Mutation of these sites abolished binding in yeast and altered LET-99 localization in vivo: LET-99 was present at the highest levels at the posterior pole of the embryo instead of a band in par-5 embryos. Together the results indicate that PAR-5 acts in a mechanism with PAR-1 to regulate LET-99 cortical localization.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Embrión no Mamífero/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/genética , Embrión no Mamífero/embriología , Microscopía Confocal , Mutación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Imagen de Lapso de Tiempo , Técnicas del Sistema de Dos Híbridos
10.
Mol Biol Cell ; 26(9): 1752-63, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25739455

RESUMEN

Torsin proteins are AAA+ ATPases that localize to the endoplasmic reticular/nuclear envelope (ER/NE) lumen. A mutation that markedly impairs torsinA function causes the CNS disorder DYT1 dystonia. Abnormalities of NE membranes have been linked to torsinA loss of function and the pathogenesis of DYT1 dystonia, leading us to investigate the role of the Caenorhabditis elegans torsinA homologue OOC-5 at the NE. We report a novel role for torsin in nuclear pore biology. In ooc-5-mutant germ cell nuclei, nucleoporins (Nups) were mislocalized in large plaques beginning at meiotic entry and persisted throughout meiosis. Moreover, the KASH protein ZYG-12 was mislocalized in ooc-5 gonads. Nups were mislocalized in adult intestinal nuclei and in embryos from mutant mothers. EM analysis revealed vesicle-like structures in the perinuclear space of intestinal and germ cell nuclei, similar to defects reported in torsin-mutant flies and mice. Consistent with a functional disruption of Nups, ooc-5-mutant embryos displayed impaired nuclear import kinetics, although the nuclear pore-size exclusion barrier was maintained. Our data are the first to demonstrate a requirement for a torsin for normal Nup localization and function and suggest that these functions are likely conserved.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Transporte Activo de Núcleo Celular , Animales , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Células Germinativas/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/citología , Membrana Nuclear/metabolismo
11.
WormBook ; : 1-43, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25548889

RESUMEN

Polarity establishment, asymmetric division, and acquisition of cell fates are critical steps during early development. In this review, we discuss processes that set up the embryonic axes, with an emphasis on polarity establishment and asymmetric division. We begin with the first asymmetric division in the C. elegans embryo, where symmetry is broken by the local inactivation of actomyosin cortical contractility. This contributes to establishing a polarized distribution of PAR proteins and associated components on the cell cortex along the longitudinal embryonic axis, which becomes the anterior-posterior (AP) axis. Thereafter, AP polarity is maintained through reciprocal negative interactions between the anterior and posterior cortical domains. We then review the mechanisms that ensure proper positioning of the centrosomes and the mitotic spindle in the one-cell embryo by exerting pulling forces on astral microtubules. We explain how a ternary complex comprised of Gα (GOA-1/GPA-16), GPR-1/GPR-2, and LIN-5 is essential for anchoring the motor protein dynein to the cell cortex, where it is thought to exert pulling forces on depolymerizing astral microtubules. We proceed by providing an overview of cell cycle asynchrony in two-cell embryos, as well as the cell signaling and spindle positioning events that underly the subsequent asymmetric divisions, which establish the dorsal-ventral and left-right axes. We then discuss how AP polarity ensures the unequal segregation of cell fate regulators via the cytoplasmic proteins MEX-5/MEX-6 and other polarity mediators, before ending with an overview of how the fates of the early blastomeres are specified by these processes.


Asunto(s)
División Celular Asimétrica , Tipificación del Cuerpo , Caenorhabditis elegans/embriología , Linaje de la Célula , Animales , Caenorhabditis elegans/citología , Embrión no Mamífero/citología , Huso Acromático/fisiología
12.
Dev Biol ; 368(2): 242-54, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22613359

RESUMEN

Microtubule dynamics are thought to play an important role in regulating microtubule interactions with cortical force generating motor proteins that position the spindle during asymmetric cell division. CLASPs are microtubule-associated proteins that have a conserved role in regulating microtubule dynamics in diverse cell types. Caenorhabditis elegans has three CLASP homologs in its genome. CLS-2 is known to localize to kinetochores and is needed for chromosome segregation at meiosis and mitosis; however CLS-1 and CLS-3 have not been reported to have any role in embryonic development. Here, we show that depletion of CLS-2 in combination with either CLS-1 or CLS-3 results in defects in nuclear rotation, maintenance of spindle length, and spindle displacement in the one-cell embryo. Polarity is normal in these embryos, but reduced numbers of astral microtubules reach all regions of the cortex at the time of spindle positioning. Analysis of the microtubule plus-end tracker EB1 also revealed a reduced number of growing microtubules reaching the cortex in CLASP depleted embryos, but the polymerization rate of astral microtubules was not slower than in wild type. These results indicate that C. elegans CLASPs act partially redundantly to regulate astral microtubules and position the spindle during asymmetric cell division. Further, we show that these spindle pole-positioning roles are independent of the CLS-2 binding proteins HCP-1 and HCP-2.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/metabolismo , Embrión no Mamífero/metabolismo , Proteínas Luminiscentes/metabolismo , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Animales , Animales Modificados Genéticamente , Western Blotting , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Citoplasma/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Inmunohistoquímica , Proteínas Luminiscentes/genética , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Interferencia de ARN , Factores de Tiempo
13.
J Cell Biol ; 189(3): 481-95, 2010 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-20421425

RESUMEN

Cortical pulling on astral microtubules positions the mitotic spindle in response to PAR polarity cues and G protein signaling in many systems. In Caenorhabditis elegans single-cell embryos, posterior spindle displacement depends on Galpha and its regulators GPR-1/2 and LIN-5. GPR-1/2 and LIN-5 are necessary for cortical pulling forces and become enriched at the posterior cortex, which suggests that higher forces act on the posterior spindle pole compared with the anterior pole. However, the precise distribution of cortical forces and how they are regulated remains to be determined. Using spindle severing, single centrosome assays, and centrosome fragmentation, we show that both the anterior and posterior cortices generate more pulling force than the lateral-posterior region. Lateral inhibition depends on LET-99, which inhibits GPR-1/2 localization to produce a bipolar GPR-1/2 pattern. Thus, rather than two domains of cortical force, there are three. We propose that the attenuation of lateral forces prevents counterproductive pulling, resulting in a higher net force toward the posterior that contributes to spindle elongation and displacement.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Embrión no Mamífero/metabolismo , Huso Acromático/fisiología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/análisis , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Mitosis/fisiología
14.
BMB Rep ; 43(2): 69-78, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20193124

RESUMEN

Asymmetric cell division is a fundamental mechanism for the generation of body axes and cell diversity during early embryogenesis in many organisms. During intrinsically asymmetric divisions, an axis of polarity is established within the cell and the division plane is oriented to ensure the differential segregation of developmental determinants to the daughter cells. Studies in the nematode Caenorhabditis elegans have contributed greatly to our understanding of the regulatory mechanisms underlying cell polarity and asymmetric division. However, much remains to be elucidated about the molecular machinery controlling the spatiotemporal distribution of key components. In this review we discuss recent findings that reveal intricate interactions between translational control and targeted proteolysis. These two mechanisms of regulation serve to carefully modulate protein levels and reinforce asymmetries, or to eliminate proteins from certain cells.


Asunto(s)
Caenorhabditis elegans/embriología , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , División Celular , Polaridad Celular , Biosíntesis de Proteínas
15.
J Cell Biol ; 187(1): 33-42, 2009 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-19786575

RESUMEN

In Caenorhabditis elegans, the MEI-1-katanin microtubule-severing complex is required for meiosis, but must be down-regulated during the transition to embryogenesis to prevent defects in mitosis. A cullin-dependent degradation pathway for MEI-1 protein has been well documented. In this paper, we report that translational repression may also play a role in MEI-1 down-regulation. Reduction of spn-2 function results in spindle orientation defects due to ectopic MEI-1 expression during embryonic mitosis. MEL-26, which is both required for MEI-1 degradation and is itself a target of the cullin degradation pathway, is present at normal levels in spn-2 mutant embryos, suggesting that the degradation pathway is functional. Cloning of spn-2 reveals that it encodes an eIF4E-binding protein that localizes to the cytoplasm and to ribonucleoprotein particles called P granules. SPN-2 binds to the RNA-binding protein OMA-1, which in turn binds to the mei-1 3' untranslated region. Thus, our results suggest that SPN-2 functions as an eIF4E-binding protein to negatively regulate translation of mei-1.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4E Eucariótico de Iniciación/fisiología , Adenosina Trifosfatasas/genética , Animales , Caenorhabditis elegans/embriología , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Citoplasma/metabolismo , Embrión no Mamífero/fisiología , Factor 4E Eucariótico de Iniciación/genética , Katanina , Unión Proteica/genética , Ribonucleoproteínas/metabolismo
16.
Mol Biol Cell ; 19(8): 3599-612, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18550799

RESUMEN

A subgroup of the AAA+ proteins that reside in the endoplasmic reticulum and the nuclear envelope including human torsinA, a protein mutated in hereditary dystonia, is called the torsin family of AAA+ proteins. A multiple-sequence alignment of this family with Hsp100 proteins of known structure reveals a conserved cysteine in the C-terminus of torsin proteins within the Sensor-II motif. A structural model predicts this cysteine to be a part of an intramolecular disulfide bond, suggesting that it may function as a redox sensor to regulate ATPase activity. In vitro experiments with OOC-5, a torsinA homolog from Caenorhabditis elegans, demonstrate that redox changes that reduce this disulfide bond affect the binding of ATP and ADP and cause an attendant local conformational change detected by limited proteolysis. Transgenic worms expressing an ooc-5 gene with cysteine-to-serine mutations that disrupt the disulfide bond have a very low embryo hatch rate compared with wild-type controls, indicating these two cysteines are essential for OOC-5 function. We propose that the Sensor-II in torsin family proteins is a redox-regulated sensor. This regulatory mechanism may be central to the function of OOC-5 and human torsinA.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Disulfuros , Oxidación-Reducción , Talina/química , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Endopeptidasa Clp/metabolismo , Retículo Endoplásmico/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Nucleótidos/química , Homología de Secuencia de Aminoácido
17.
Dev Biol ; 315(1): 42-54, 2008 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-18234174

RESUMEN

G protein signaling pathways regulate mitotic spindle positioning during cell division in many systems. In Caenorhabditis elegans embryos, G alpha subunits act with the positive regulators GPR-1/2 and LIN-5 to generate cortical pulling forces for posterior spindle displacement during the first asymmetric division. GPR-1/2 are asymmetrically localized at the posterior cortex by PAR polarity cues at this time. Here we show that LIN-5 colocalizes with GPR-1/2 in one-cell embryos during spindle displacement. Significantly, we also find that LIN-5 and GPR-1/2 are localized to the opposite, anterior cortex in a polarity-dependent manner during the nuclear centration and rotation movements that orient the forming spindle onto the polarity axis. The depletion of LIN-5 or GPR-1/2 results in decreased centration and rotation rates, indicating a role in force generation at this stage. The localization of LIN-5 and GPR-1/2 is largely interdependent and requires G alpha. Further, LIN-5 immunoprecipitates with G alpha in vivo, and this association is GPR-1/2 dependent. These results suggest that a complex of G alpha/GPR-1/2/LIN-5 is asymmetrically localized in response to polarity cues, and this may be the active signaling complex that transmits asymmetries to the force generation machinery during both nuclear rotation and spindle displacement.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/embriología , Proteínas de Ciclo Celular/fisiología , Huso Acromático/fisiología , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/fisiología , Polaridad Celular , Embrión no Mamífero , Femenino , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Microscopía por Video , Pruebas de Precipitina , Interferencia de ARN , Rotación
18.
Mol Biol Cell ; 18(11): 4470-82, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17761536

RESUMEN

The conserved PAR proteins are localized in asymmetric cortical domains and are required for the polarized localization of cell fate determinants in many organisms. In Caenorhabditis elegans embryos, LET-99 and G protein signaling act downstream of the PARs to regulate spindle positioning and ensure asymmetric division. PAR-3 and PAR-2 localize LET-99 to a posterior cortical band through an unknown mechanism. Here we report that LET-99 asymmetry depends on cortically localized PAR-1 and PAR-4 but not on cytoplasmic polarity effectors. In par-1 and par-4 embryos, LET-99 accumulates at the entire posterior cortex, but remains at low levels at the anterior cortex occupied by PAR-3. Further, PAR-3 and PAR-1 have graded cortical distributions with the highest levels at the anterior and posterior poles, respectively, and the lowest levels of these proteins correlate with high LET-99 accumulation. These results suggest that PAR-3 and PAR-1 inhibit the localization of LET-99 to generate a band pattern. In addition, PAR-1 kinase activity is required for the inhibition of LET-99 localization, and PAR-1 associates with LET-99. Finally, examination of par-1 embryos suggests that the banded pattern of LET-99 is critical for normal posterior spindle displacement and to prevent spindle misorientation caused by cell shape constraints.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/metabolismo , Anafase , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Polaridad Celular , Forma de la Célula , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mutación/genética , Proteínas Serina-Treonina Quinasas/genética , Sensibilidad y Especificidad , Huso Acromático/genética
19.
Mol Biol Cell ; 17(11): 4911-24, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16971515

RESUMEN

Spindle positioning is essential for the segregation of cell fate determinants during asymmetric division, as well as for proper cellular arrangements during development. In Caenorhabditis elegans embryos, spindle positioning depends on interactions between the astral microtubules and the cell cortex. Here we show that let-711 is required for spindle positioning in the early embryo. Strong loss of let-711 function leads to sterility, whereas partial loss of function results in embryos with defects in the centration and rotation movements that position the first mitotic spindle. let-711 mutant embryos have longer microtubules that are more cold-stable than in wild type, a phenotype opposite to the short microtubule phenotype caused by mutations in the C. elegans XMAP215 homolog ZYG-9. Simultaneous reduction of both ZYG-9 and LET-711 can rescue the centration and rotation defects of both single mutants. let-711 mutant embryos also have larger than wild-type centrosomes at which higher levels of ZYG-9 accumulate compared with wild type. Molecular identification of LET-711 shows it to be an ortholog of NOT1, the core component of the CCR4/NOT complex, which plays roles in the negative regulation of gene expression at transcriptional and post-transcriptional levels in yeast, flies, and mammals. We therefore propose that LET-711 inhibits the expression of ZYG-9 and potentially other centrosome-associated proteins, in order to maintain normal centrosome size and microtubule dynamics during early embryonic divisions.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Proteínas de Ciclo Celular/metabolismo , Embrión no Mamífero/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia , Huso Acromático/metabolismo , Factores de Transcripción/metabolismo , Animales , Aurora Quinasa A , Núcleo Celular/metabolismo , Centrosoma/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/patología , Mutación/genética , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Tubulina (Proteína)/metabolismo
20.
WormBook ; : 1-20, 2005 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18050411

RESUMEN

Asymmetric cell divisions play an important role in generating diversity during metazoan development. In the early C. elegans embryo, a series of asymmetric divisions are crucial for establishing the three principal axes of the body plan (AP, DV, LR) and for segregating determinants that specify cell fates. In this review, we focus on events in the one-cell embryo that result in the establishment of the AP axis and the first asymmetric division. We first describe how the sperm-derived centrosome initiates movements of the cortical actomyosin network that result in the polarized distribution of PAR proteins. We then briefly discuss how components acting downstream of the PAR proteins mediate unequal segregation of cell fate determinants to the anterior blastomere AB and the posterior blastomere P1. We also review how a heterotrimeric G protein pathway generates cortically based pulling forces acting on astral microtubules, thus mediating centrosome and spindle positioning in response to AP polarity cues. In addition, we briefly highlight events involved in establishing the DV and LR axes. The DV axis is established at the four-cell stage, following specific cell-cell interactions that occur between P2 and EMS, the two daughters of P1, as well as between P2 and ABp, a daughter of AB. The LR axis is established shortly thereafter by the division pattern of ABa and ABp. We conclude by mentioning how findings made in early C. elegans embryos are relevant to understanding asymmetric cell division and pattern formation across metazoan evolution.


Asunto(s)
Tipificación del Cuerpo , Caenorhabditis elegans/enzimología , División Celular , Animales , Caenorhabditis elegans/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA