Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Mil Psychol ; 36(1): 33-48, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38193873

RESUMEN

Aptitude requirements for US Air Force officer commissioning include completion of a college degree and minimum scores on the Air Force Officer Qualifying Test (AFOQT) Verbal and Quantitative composites. Although the AFOQT has demonstrated predictive validity for officer training, the Air Force has striven to improve predictive validity and diversity. To this end, a Situational judgment Test (SJT) was added to the AFOQT in 2015. SJT development was consistent with recommendations to broaden the competencies assessed by the AFOQT with the goal of providing incremental validity, while reducing adverse impact for historically underrepresented groups. To ensure content validity and realism, SJT development was based on competencies identified in a large-scale analysis of officership and input from junior officers in scenario and response generation and scoring. Psychometric evaluations have affirmed its potential benefits for inclusion on the AFOQT. An initial study showed the SJT to be perceived as highly face valid regardless of whether it was presented as a paper-and-pencil test (with narrative or scripted scenarios) or in a video-based format. Preliminary studies demonstrated criterion-related validity within small USAF samples, and a larger Army cadet sample. Additionally, operational administration of the SJT since 2015 has demonstrated its potential for improving diversity (i.e., reduced adverse impact relative to the AFOQT Verbal and Quantitative composites). Predictive validation studies with larger Air Force officer accession samples are ongoing to assess the incremental validity of the SJT beyond current AFOQT composites for predicting important outcomes across accession sources.


Asunto(s)
Suplementos Dietéticos , Juicio , Humanos , Escolaridad , Narración , Psicometría
2.
Mil Psychol ; 36(1): 16-32, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38193876

RESUMEN

Beyond proficiency on occupationally specific tasks, the U.S. Air Force expects members to develop proficiency on institutionally valued "soft skill" competencies (e.g., Teamwork, Communication, and Initiative) throughout their careers. As such, all E1-E6 members are annually evaluated using Behaviorally Anchored Rating Scales (BARS) designed to measure such competencies. Despite mandated use, these Airman Comprehensive Assessment (ACA) scales previously have not been empirically evaluated. To address this gap, we surveyed Air Force supervisors, using a criterion-related sampling methodology to validate the behavioral anchors for each scale. Supervisors identified two subordinates of the same rank/career field who they viewed as having (a) high potential for future success in an Air Force career or, alternately, (b) lower potential for future career success and rated each subordinate on the individual behaviors that comprise the 12 scales. ACA items were intermixed with scale items previously identified as distinguishing top performers in civilian organizations. Results demonstrate scale reliability and generally validate the ACA competency scales as stronger differentiators of supervisor-rated career potential than competency scales developed for civilian organizations. We provide recommendations for re-calibration of scale anchors based on the relative percentage of high vs. low potential members that demonstrate each behavior, and suggest changes to improve correspondence between measured competency proficiency and supervisor-rated career potential.


Asunto(s)
Comunicación , Impulso (Psicología) , Humanos , Reproducibilidad de los Resultados , Calibración , Investigadores
3.
PLoS Genet ; 19(8): e1010898, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37639444

RESUMEN

Kar4p, the yeast homolog of the mammalian methyltransferase subunit METTL14, is required for efficient mRNA m6A methylation, which regulates meiotic entry. Kar4p is also required for a second seemingly non-catalytic function during meiosis. Overexpression of the early meiotic transcription factor, IME1, can bypass the requirement for Kar4p in meiotic entry but the additional overexpression of the translational regulator, RIM4, is required to permit sporulation in kar4Δ/Δ. Using microarray analysis and RNA sequencing, we sought to determine the impact of removing Kar4p and consequently mRNA methylation on the early meiotic transcriptome in a strain background (S288c) that is sensitive to the loss of early meiotic regulators. We found that kar4Δ/Δ mutants have a largely wild type transcriptional profile with the exception of two groups of genes that show delayed and reduced expression: (1) a set of Ime1p-dependent early genes as well as IME1, and (2) a set of late genes dependent on the mid-meiotic transcription factor, Ndt80p. The early gene expression defect is likely the result of the loss of mRNA methylation and is rescued by overexpressing IME1, but the late defect is only suppressed by overexpression of both IME1 and RIM4. The requirement for RIM4 led us to predict that the non-catalytic function of Kar4p, like methyltransferase complex orthologs in other systems, may function at the level of translation. Mass spectrometry analysis identified several genes involved in meiotic recombination with strongly reduced protein levels, but with little to no reduction in transcript levels in kar4Δ/Δ after IME1 overexpression. The low levels of these proteins were rescued by overexpression of RIM4 and IME1, but not by the overexpression of IME1 alone. These data expand our understanding of the role of Kar4p in regulating meiosis and provide key insights into a potential mechanism of Kar4p's later meiotic function that is independent of mRNA methylation.


Asunto(s)
Proteínas de Unión al ADN , Regulación Fúngica de la Expresión Génica , Meiosis , Metiltransferasas , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción , Animales , Citoplasma , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Meiosis/genética , Metiltransferasas/genética , ARN Mensajero/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
PLoS Genet ; 19(8): e1010896, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37603553

RESUMEN

KAR4, the yeast homolog of the mammalian mRNA N6A-methyltransferase complex component METTL14, is required for two disparate developmental programs in Saccharomyces cerevisiae: mating and meiosis. To understand KAR4's role in yeast mating and meiosis, we used a genetic screen to isolate 25 function-specific mutant alleles, which map to non-overlapping surfaces on a predicted structure of the Kar4 protein (Kar4p). Most of the mating-specific alleles (Mat-) abolish Kar4p's interaction with the transcription factor Ste12p, indicating that Kar4p's mating function is through Ste12p. In yeast, the mRNA methyltransferase complex was previously defined as comprising Ime4p (Kar4p's paralog and the homolog of mammalian METTL3), Mum2p (homolog of mammalian WTAP), and Slz1p (MIS), but not Kar4p. During meiosis, Kar4p interacts with Ime4p, Mum2p, and Slz1p. Moreover, cells lacking Kar4p have highly reduced levels of mRNA methylation during meiosis indicating that Kar4p is a key member of the methyltransferase complex, as it is in humans. Analysis of kar4Δ/Δ and 7 meiosis-specific alleles (Mei-) revealed that Kar4p is required early in meiosis, before initiation of S-phase and meiotic recombination. High copy expression of the meiotic transcriptional activator IME1 rescued the defect of these Mei- alleles. Surprisingly, Kar4p was also found to be required at a second step for the completion of meiosis and sporulation. Over-expression of IME1 in kar4Δ/Δ permits pre-meiotic S-phase, but most cells remained arrested with a monopolar spindle. Analysis of the function-specific mutants revealed that roughly half became blocked after premeiotic DNA synthesis and did not sporulate (Spo-). Loss of Kar4p's Spo function was suppressed by overexpression of RIM4, a meiotic translational regulator. Overexpression of IME1 and RIM4 together allowed sporulation of kar4Δ/Δ cells. Taken together, these data suggest that Kar4p regulates meiosis at multiple steps, presumably reflecting requirements for methylation in different stages of meiotic gene expression.


Asunto(s)
Proteínas de Unión al ADN , Metiltransferasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Transcripción , Humanos , Meiosis/genética , Metilación , Metiltransferasas/genética , Reproducción , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Unión al ADN/genética
6.
Genetics ; 224(1)2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36930734

RESUMEN

N6-Methyladenosine (m6A) is among the most abundant modifications of eukaryotic mRNAs. mRNA methylation regulates many biological processes including playing an essential role in meiosis. During meiosis in the budding yeast, Saccharomyces cerevisiae, m6A levels peak early, before the initiation of the meiotic divisions. High-throughput studies suggested, and this work confirms that the uncharacterized protein Ygl036wp interacts with Kar4p, a component of the mRNA m6A-methyltransferase complex. Protein structure programs predict that Ygl036wp folds like VIRMA/Virilizer/VIR, which is involved in mRNA m6A-methylation in higher eukaryotes. In addition, Ygl036wp contains conserved motifs shared with VIRMA/Virilizer/VIR. Accordingly, we propose the name VIR1 for budding yeast ortholog of VIRMA/Virilizer/VIR 1. Vir1p interacts with all other members of the yeast methyltransferase complex and is itself required for mRNA m6A methylation and meiosis. In the absence of Vir1p proteins comprising the methyltransferase complex become unstable, suggesting that Vir1p acts as a scaffold for the complex. The vir1Δ/Δ mutant is defective for the premeiotic S-phase, which is suppressed by overexpression of the early meiotic transcription factor IME1; additional overexpression of the translational regulator RIM4 is required for sporulation. The vir1Δ/Δ mutant exhibits reduced levels of IME1 mRNA, as well as transcripts within Ime1p's regulon. Suppression by IME1 revealed an additional defect in the expression of the middle meiotic transcription factor, Ndt80p (and genes in its regulon), which is rescued by overexpression of RIM4. Together, these data suggest that Vir1p is required for cells to initiate the meiotic program and for progression through the meiotic divisions and spore formation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Metilación , Factores de Transcripción/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Meiosis/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas de Unión al ARN/genética
7.
bioRxiv ; 2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36747654

RESUMEN

Kar4p, the yeast homolog of the mammalian methyltransferase subunit METTL14, is required for the initiation of meiosis and has at least two distinct functions in regulating the meiotic program. Cells lacking Kar4p can be driven to sporulate by co-overexpressing the master meiotic transcription factor, IME1 , and the translational regulator, RIM4 , suggesting that Kar4p functions at both the transcriptional and translational level to regulate meiosis. Using microarray analysis and RNA sequencing, we found that kar4 Δ/Δ mutants have a largely wild type transcriptional profile with the exception of two groups of genes that show delayed and reduced expression: (1) a set of Ime1p-dependent early genes as well as IME1 , and (2) a set of late genes dependent on the mid-meiotic transcription factor, Ndt80p. The early gene expression defect is rescued by overexpressing IME1 , but the late defect is only suppressed by overexpression of both IME1 and RIM4 . Mass spectrometry analysis identified several genes involved in meiotic recombination with strongly reduced protein levels, but with little to no reduction in transcript levels in kar4 Δ/Δ after IME1 overexpression. The low levels of these proteins were rescued by overexpression of RIM4 and IME1 , but not by the overexpression of IME1 alone. These data expand our understanding of the role of Kar4p in regulating meiosis and provide key insights into a potential mechanism of Kar4p's later meiotic function that is independent of mRNA methylation. Author Summary: Kar4p is required at two stages during meiosis. Cells lacking Kar4p have a severe loss of mRNA methylation and arrest early in the meiotic program, failing to undergo either pre-meiotic DNA synthesis or meiotic recombination. The early block is rescued by overexpression of the meiotic transcription factor, IME1 . The kar4 Δ/Δ cells show delayed and reduced expression of a set of Ime1p-dependent genes expressed early in meiosis as well as a set of later genes that are largely Ndt80p-dependent. Overexpression of IME1 rescues the expression defect of these early genes and expedites the meiotic program in the wild type S288C strain background. However, IME1 overexpression is not sufficient to facilitate sporulation in kar4 Δ/Δ. Completion of meiosis and sporulation requires the additional overexpression of a translational regulator, RIM4 . Analysis of kar4 Δ/Δ's proteome during meiosis with IME1 overexpression revealed that proteins important for meiotic recombination have reduced levels that cannot be explained by equivalent reductions in transcript abundance. IME1 overexpression by itself rescues the defect associated with a catalytic mutant of Ime4p, implying that the early defect reflects mRNA methylation. The residual defects in protein levels likely reflect the loss of a non-catalytic function of Kar4p, and the methylation complex, which requires overexpression of RIM4 to suppress.

8.
bioRxiv ; 2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36747717

RESUMEN

KAR4 , the yeast homolog of the mammalian mRNA N 6 A-methyltransferase complex component METTL14 , is required for two disparate developmental programs in Saccharomyces cerevisiae : mating and meiosis. To understand KAR4 's role in yeast mating and meiosis, we used a genetic screen to isolate 25 function-specific mutant alleles, which map to non-overlapping surfaces on a predicted structure of the Kar4 protein (Kar4p). Most of the mating-specific alleles (Mat - ) abolish Kar4p's interaction with the transcription factor Ste12p, indicating that Kar4p's mating function is through Ste12p. In yeast, the mRNA methyltransferase complex was previously defined as comprising Ime4p (Kar4p's paralog and the homolog of mammalian METTL3), Mum2p (homolog of mammalian WTAP), and Slz1p (MIS), but not Kar4p. During meiosis, Kar4p interacts with Ime4p, Mum2p, and Slz1p. Moreover, cells lacking Kar4p have highly reduced levels of mRNA methylation during meiosis indicating that Kar4p is a key member of the methyltransferase complex, as it is in humans. Analysis of kar4 Δ/Δ and 7 meiosis-specific alleles (Mei - ) revealed that Kar4p is required early in meiosis, before initiation of S-phase and meiotic recombination. High copy expression of the meiotic transcriptional activator IME1 rescued the defect of these Mei- alleles. Surprisingly, Kar4p was also found to be required at a second step for the completion of meiosis and sporulation. Over-expression of IME1 in kar4 Δ/Δ permits pre-meiotic S-phase, but most cells remained arrested with a monopolar spindle. Analysis of the function-specific mutants revealed that roughly half became blocked after premeiotic DNA synthesis and did not sporulate (Spo - ). Loss of Kar4p's Spo function was suppressed by overexpression of RIM4 , a meiotic translational regulator. Overexpression of IME1 and RIM4 together allowed sporulation of kar4 Δ/Δ cells. Taken together, these data suggest that Kar4p regulates meiosis at multiple steps, presumably reflecting requirements for methylation in different stages of meiotic gene expression. Author Summary: In yeast, KAR4 is required for mating and meiosis. A genetic screen for function-specific mutations identified 25 alleles that map to different surfaces on a predicted structure of the Kar4 protein (Kar4p). The mating-specific alleles interfere with Kar4p's ability to interact with the transcription factor Ste12p, its known partner in mating. The meiosis-specific alleles revealed an independent function: Kar4p is required for entry into meiosis and initiation of S-phase. During meiosis, Kar4p interacts with all components of the mRNA methyltransferase complex and kar4 Δ/Δ mutants have greatly reduced levels of mRNA methylation. Thus, Kar4p is a member of the yeast methyltransferase complex. Overexpression of the meiotic transcriptional activator IME1 rescued the meiotic entry defect but did not lead to sporulation, implying that Kar4p has more than one meiotic function. Suppression by Ime1p overexpression led to arrest after premeiotic DNA synthesis, but before sporulation. Loss of Kar4's sporulation function can be suppressed by overexpression of a translation regulator, Rim4p. Overexpression of both IME1 and RIM4 allowed sporulation in kar4 Δ/Δ cells.

9.
bioRxiv ; 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36798303

RESUMEN

N 6 -Methyladenosine (m 6 A) is one of the most abundant modifications found on eukaryotic mRNAs. mRNA methylation regulates a host of biological processes including meiosis, a specialized diploid cell division program that results in the formation of haploid cells (gametes). During budding yeast meiosis, m 6 A levels peak early, before the initiation of the meiotic divisions. High-throughput studies and work from our lab showed that Ygl036wp, a previously uncharacterized protein interacts with Kar4p, a meiotic protein required for mRNA m 6 A-methylation. Ygl036wp has no discernable domains except for several intrinsically disordered regions. However, protein folding prediction tools showed that Ygl036wp folds like VIRMA/Virilizer/VIR, which is involved in mRNA m 6 A-methylation in higher eukaryotes. In addition, Ygl036wp has several conserved motifs shared with VIRMA/Virilizer/VIR proteins. Accordingly, we propose to call the gene VIR1 for budding yeast ortholog of VIR MA/Virilizer/VIR 1 . In support, Vir1p interacts with all other members of the yeast methyltransferase complex and is required for mRNA m 6 A methylation and meiosis. Vir1p is required for the stability of proteins comprising the methyltransferase complex, suggesting that Vir1p acts as a scaffold to stabilize the complex. The vir1 Δ/Δ mutant is defective for premeiotic S-phase, which is suppressed by overexpression of the early meiotic transcription factor IME1; additional overexpression of the translational regulator RIM4 is required for sporulation. Consistent with IME1 suppression, vir1 Δ/Δ exhibits a defect in the abundance of IME1 mRNA, as well as transcripts within Ime1p's regulon. Suppression by IME1 revealed a defect in the expression of the middle meiotic transcription factor, Ndt80p (and genes in its regulon), which is rescued by additional overexpression of RIM4 . Together, these data suggest that Vir1p is required for cells to initiate the meiotic program and for progression through the meiotic divisions and spore formation. Author Summary: Ygl036wp is a previously uncharacterized protein that we propose to name Vir1p (budding yeast ortholog of VIR MA/Virilizer/VIR 1 ). Work from our lab and others initially found an interaction between Vir1p and members of the yeast mRNA methyltransferase complex (Kar4p and Mum2p). We found that Vir1p interacts with all known members of the methyltransferase complex and is required for mRNA methylation. Vir1p is required early in meiosis; vir1 Δ/Δ mutants arrest due to the reduced expression of Ime1p. Lower levels of Ime1p cause severe disruption to the meiotic transcriptome in vir1 Δ/Δ. The vir1 Δ/Δ meiotic defect can be partially suppressed by the overexpression of IME1 ; full suppression requires overexpression of both IME1 and RIM4 . Using recent advances in protein folding predictions, we found that Vir1p is a remote homolog of VIRMA/Virilizer/VIR and shares conserved motifs with the protein from other organisms. Vir1p, like VIRMA/Virilizer/VIR, stabilizes the methyltransferase complex.

10.
Biochem Pharmacol ; 204: 115209, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35973582

RESUMEN

The last 25 years have seen significant growth in new therapeutic options for breast cancer, termed targeted therapies based on their ability to block specific pathways known to drive breast tumor growth and survival. Introduction of these drugs has been made possible through advances in the understanding of breast cancer biology. While the promise of targeted therapy for breast cancer has been clear for some time, the experience of the clinical use of multiple drugs and drug classes allows us to now present a summary and perspective as to the success and impact of this endeavor. Here we will review breast cancer targeted therapeutics in clinical use. We will provide the rationale for their indications and summarize clinical data in patients with different breast cancer subtypes, their impact on breast cancer progression and survival and their major adverse effects. The focus of this review will be on the development that has occurred within classes of targeted therapies and subsequent impact on breast cancer patient outcomes. We will conclude with a perspective on the role of targeted therapy in breast cancer treatment and highlight future areas of development.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Terapia Molecular Dirigida
11.
J Med Chem ; 65(14): 9819-9845, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35816678

RESUMEN

The Rho kinase (ROCK) pathway is implicated in the pathogenesis of several conditions, including neurological diseases. In Huntington's disease (HD), ROCK is implicated in mutant huntingtin (HTT) aggregation and neurotoxicity, and members of the ROCK pathway are increased in HD mouse models and patients. To validate this mode of action as a potential treatment for HD, we sought a potent, selective, central nervous system (CNS)-penetrant ROCK inhibitor. Identifying a compound that could be dosed orally in mice with selectivity against other AGC kinases, including protein kinase G (PKG), whose inhibition could potentially activate the ROCK pathway, was paramount for the program. We describe the optimization of published ligands to identify a novel series of ROCK inhibitors based on a piperazine core. Morphing of the early series developed in-house by scaffold hopping enabled the identification of a compound exhibiting high potency and desired selectivity and demonstrating a robust pharmacodynamic (PD) effect by the inhibition of ROCK-mediated substrate (MYPT1) phosphorylation after oral dosing.


Asunto(s)
Enfermedad de Huntington , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/tratamiento farmacológico , Ratones , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinasas Asociadas a rho
12.
AAPS J ; 24(3): 66, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534647

RESUMEN

Decades of discussion and publication have gone into the guidance from the scientific community and the regulatory agencies on the use and validation of pharmacokinetic and toxicokinetic assays by chromatographic and ligand binding assays for the measurement of drugs and metabolites. These assay validations are well described in the FDA Guidance on Bioanalytical Methods Validation (BMV, 2018). While the BMV included biomarker assay validation, the focus was on understanding the challenges posed in validating biomarker assays and the importance of having reliable biomarker assays when used for regulatory submissions, rather than definition of the appropriate experiments to be performed. Different from PK bioanalysis, analysis of biomarkers can be challenging due to the presence of target analyte(s) in the control matrices used for calibrator and quality control sample preparation, and greater difficulty in procuring appropriate reference standards representative of the endogenous molecule. Several papers have been published offering recommendations for biomarker assay validation. The situational nature of biomarker applications necessitates fit-for-purpose (FFP) assay validation. A unifying theme for FFP analysis is that method validation requirements be consistent with the proposed context of use (COU) for any given biomarker. This communication provides specific recommendations for biomarker assay validation (BAV) by LC-MS, for both small and large molecule biomarkers. The consensus recommendations include creation of a validation plan that contains definition of the COU of the assay, use of the PK assay validation elements that support the COU, and definition of assay validation elements adapted to fit biomarker assays and the acceptance criteria for both.


Asunto(s)
Bioensayo , Bioensayo/métodos , Biomarcadores/análisis , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Estándares de Referencia
13.
Biomolecules ; 12(4)2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35454186

RESUMEN

In Saccharomyces cerevisiae, the p21-activated kinase Cla4p regulates polarized morphogenesis and cytokinesis. However, it remains unknown how Cla4p kinase activity is regulated. After pheromone exposure, yeast cells temporally separate the mitotic and mating programs by sequestering Fus2p in the nucleus until cell cycle completion, after which Fus2p exits to facilitate cell fusion. Previously, we showed that sequestration is regulated by two opposing protein kinases, Cla4p and Fus3p. Phosphorylation of Fus2p-S67 by Cla4p promotes nuclear localization by both activating nuclear import and blocking export. During mating, phosphorylation of Fus2p-S85 and Fus2p-S100 by Fus3p promotes nuclear export and blocks import. Here, we find that Cla4p kinase activity is itself down-regulated during mating. Pheromone exposure causes Cla4p hyper-phosphorylation and reduced Fus2p-S67 phosphorylation, dependent on Fus3p. Multiple phosphorylation sites in Cla4p are mating- and/or Fus3p-specific. Of these, Cla4p-S186 phosphorylation reduced the kinase activity of Cla4p, in vitro. A phosphomimetic cla4-S186E mutation caused a strong reduction in Fus2p-S67 phosphorylation and nuclear localization, in vivo. More generally, a non-phosphorylatable mutation, cla4-S186A, caused failure to maintain pheromone arrest and delayed formation of the mating-specific septin morphology. Thus, as cells enter the mating pathway, Fus3p counteracts Cla4p kinase activity to allow proper mating differentiation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Núcleo Celular/metabolismo , Proteínas Quinasas Activadas por Mitógenos , Feromonas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
J Appl Clin Med Phys ; 23(5): e13569, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35278033

RESUMEN

The purpose of the study was to introduce and evaluate a high-resolution diode array for patient-specific quality assurance (PSQA) of CyberKnife brain stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT). Thirty-three intracranial plans were retrospectively delivered on the SRS MapCHECK using fixed cone, Iris, and multileaf collimator (MLC). The plans were selected to cover a range of sites from large tumor bed, single/multiple small brain metastases (METs) to trigeminal neuralgia. Fiducial tracking using the four fiducials embedded around the detector plane was used as image guidance. Results were analyzed before and after registration based on absolute dose gamma criterion of 1 mm distance-to-agreement and 0.5%-3% dose-difference. Overall, the gamma passing rates (1 mm and 3% criterion) before registration for all the patients were above 90% for all three treatment modalities (96.8 ± 3.5%, the lowest passing rate of 90.4%), and were improved after registration (99.3 ± 1.5%). When tighter criteria (1 mm and 2%) were applied, the gamma passing rates after registration for all the cases dropped to 97.3 ± 3.2%. For trigeminal neuralgia cases, we applied 1 mm and 0.5% criterion and the passing rates dropped from 100 ± 0.0% to 98.5 ± 2.0%. The mean delivery time was 33.4 ± 11.7 min, 24.0 ± 4.9 min, and 17.1 ± 2.6 min for the fixed cone, Iris, and MLC, respectively. With superior gamma passing rates and reasonable quality assurance (QA) time, we believe the SRS MapCHECK could be a good option for routine PSQA for CyberKnife SRS/SRT.


Asunto(s)
Radiocirugia , Radioterapia de Intensidad Modulada , Procedimientos Quirúrgicos Robotizados , Neuralgia del Trigémino , Encéfalo , Humanos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Estudios Retrospectivos , Neuralgia del Trigémino/cirugía
15.
J Fungi (Basel) ; 7(12)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34947031

RESUMEN

The primary role of the Cell Wall Integrity Pathway (CWI) in Saccharomyces cerevisiae is monitoring the state of the cell wall in response to general life cycle stresses (growth and mating) and imposed stresses (temperature changes and chemicals). Of the five mechanosensor proteins monitoring cell wall stress, Wsc1p and Mid2p are the most important. We find that WSC1 has a stringent requirement in zygotes and diploids, unlike haploids, and differing from MID2's role in shmoos. Diploids lacking WSC1 die frequently, independent of mating type. Death is due to loss of cell wall and plasma membrane integrity, which is suppressed by osmotic support. Overexpression of several CWI pathway components suppress wsc1∆ zygotic death, including WSC2, WSC3, and BEM2, as well as the Rho-GAPS, BEM3 and RGD2. Microscopic observations and suppression by BEM2 and BEM3 suggest that wsc1∆ zygotes die during bud emergence. Downstream in the CWI pathway, overexpression of a hyperactive protein kinase C (Pkc1p-R398P) causes growth arrest, and blocks the pheromone response. With moderate levels of Pkc1p-R398P, cells form zygotes and the wsc1∆ defect is suppressed. This work highlights functional differences in the requirement for Wsc1p in diploids Versus haploids and between Mid2p and Wsc1p during mating.

16.
G3 (Bethesda) ; 11(3)2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33793773

RESUMEN

In eukaryotes, DNA mismatch recognition is accomplished by the highly conserved MutSα (Msh2/Msh6) and MutSß (Msh2/Msh3) complexes. Previously, in the yeast Saccharomyces cerevisiae, we determined that deleting MSH6 caused wild-type Msh2 levels to drop by ∼50%. In this work, we determined that Msh6 steady-state levels are coupled to increasing or decreasing levels of Msh2. Although Msh6 and Msh2 are reciprocally regulated, Msh3 and Msh2 are not. Msh2 missense variants that are able to interact with Msh6 were destabilized when Msh6 was deleted; in contrast, variants that fail to dimerize were not further destabilized in cells lacking Msh6. In the absence of Msh6, Msh2 is turned over at a faster rate and degradation is mediated by the ubiquitin-proteasome pathway. Mutagenesis of certain conserved lysines near the dimer interface restored the levels of Msh2 in the absence of Msh6, further supporting a dimer stabilization mechanism. We identified two alternative forms of regulation both with the potential to act via lysine residues, including acetylation by Gcn5 and ubiquitination by the Not4 ligase. In the absence of Gcn5, Msh2 levels were significantly decreased; in contrast, deleting Not4 stabilized Msh2 and Msh2 missense variants with partial function. The stabilizing effect on Msh2 by either the presence of Msh6 or the absence of Not4 are dependent on Gcn5. Taken together, the results suggest that the wild-type MutSα mismatch repair protein stability is governed by subunit interaction, acetylation, and ubiquitination.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Acetilación , Reparación de la Incompatibilidad de ADN , Reparación del ADN , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Estabilidad Proteica , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinación
17.
J Med Chem ; 64(8): 5018-5036, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33783225

RESUMEN

Our group has recently shown that brain-penetrant ataxia telangiectasia-mutated (ATM) kinase inhibitors may have potential as novel therapeutics for the treatment of Huntington's disease (HD). However, the previously described pyranone-thioxanthenes (e.g., 4) failed to afford selectivity over a vacuolar protein sorting 34 (Vps34) kinase, an important kinase involved with autophagy. Given that impaired autophagy has been proposed as a pathogenic mechanism of neurodegenerative diseases such as HD, achieving selectivity over Vps34 became an important objective for our program. Here, we report the successful selectivity optimization of ATM over Vps34 by using X-ray crystal structures of a Vps34-ATM protein chimera where the Vps34 ATP-binding site was mutated to approximate that of an ATM kinase. The morpholino-pyridone and morpholino-pyrimidinone series that resulted as a consequence of this selectivity optimization process have high ATM potency and good oral bioavailability and have lower molecular weight, reduced lipophilicity, higher aqueous solubility, and greater synthetic tractability compared to the pyranone-thioxanthenes.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Piridonas/química , Pirimidinonas/química , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Sitios de Unión , Encéfalo/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Cristalografía por Rayos X , Diseño de Fármacos , Semivida , Humanos , Enfermedad de Huntington/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación de Dinámica Molecular , Morfolinos/química , Piridonas/metabolismo , Piridonas/uso terapéutico , Pirimidinonas/metabolismo , Pirimidinonas/uso terapéutico , Relación Estructura-Actividad
18.
Arthrosc Tech ; 10(1): e9-e13, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33532201

RESUMEN

Patellar tendon ruptures are rare injuries in young athletes, resulting in disruption of the extensor mechanism, and require surgery for functional recovery. Several techniques have been reported, including end-to-end repair and single-row suture anchor constructs. The strength of these repairs has been questioned, and they are commonly augmented. We endorse a double-row repair technique that provides an anatomic restoration of the footprint, has high fixation strength, eliminates the need for graft augmentation, and allows early motion.

19.
World J Emerg Med ; 12(1): 12-17, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33505544

RESUMEN

BACKGROUND: Oligoanalgesia in emergency departments (EDs) is multifactorial. A previous study reported that emergency providers did not adequately manage patients with severe pain despite objective findings for surgical pathologies. Our study aims to investigate clinical and laboratory factors, in addition to providers' interventions, that might have been associated with oligoanalgesia in a group of ED patients with moderate and severe pains due to surgical pathologies. METHODS: We conducted a retrospective study of adult patients who were transferred directly from referring EDs to the emergency general surgery (EGS) service at a quaternary academic center between January 2014 and December 2016. Patients who were intubated, did not have adequate records, or had mild pain were excluded. The primary outcome was refractory pain, which was defined as pain reduction <2 units on the 0-10 pain scale between triage and ED departure. RESULTS: We analyzed 200 patients, and 58 (29%) had refractory pain. Patients with refractory pain had significantly higher disease severity, serum lactate (3.4±2.0 mg/dL vs. 1.4±0.9 mg/dL, P=0.001), and less frequent pain medication administration (median [interquartile range], 3 [3-5] vs. 4 [3-7], P=0.001), when compared to patients with no refractory pain. Multivariable logistic regression showed that the number of pain medication administration (odds ratio [OR] 0.80, 95% confidence interval [95% CI] 0.68-0.98) and ED serum lactate levels (OR 3.80, 95% CI 2.10-6.80) were significantly associated with the likelihood of refractory pain. CONCLUSIONS: In ED patients transferring to EGS service, elevated serum lactate levels were associated with a higher likelihood of refractory pain. Future studies investigating pain management in patients with elevated serum lactate are needed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...