Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39337377

RESUMEN

The demand for terrestrial snails as a food source is still on the increase globally, yet this has been overlooked in disease epidemiology and the spread of antimicrobial resistance. This study conducted genomic analyses of twenty Citrobacter portucalensis strains isolated from live edible snails traded in two hubs. The isolates were subjected to MALDI-TOF MS, antimicrobial resistance testing, whole genome sequencing, and analyses for in-depth characterization. The findings disclosed that seventeen strains across the two trading hubs were distinct from previously reported ones. Four isolates were found to share the same sequence type (ST881). Genome-based comparison suggests a clonal transmission of strains between snails traded in these hubs. All the isolates across the two hubs harbored similar variety of antimicrobial resistance genes, with notable ones being blaCMY and qnrB. Sixteen isolates (80%) expressed phenotypic resistance to second-generation cephalosporins, while eleven isolates (55%) exhibited resistance to third-generation cephalosporins. This report of multi-drug-resistant C. portucalensis strains in edible snails highlights significant concerns for food safety and clinical health because of the potential transmission to humans. Enhanced surveillance and stringent monitoring by health authorities are essential to evaluate the impact of these strains on the burden of antimicrobial resistance and to address the associated risk.


Asunto(s)
Citrobacter , Farmacorresistencia Bacteriana Múltiple , Genómica , Caracoles , Animales , Farmacorresistencia Bacteriana Múltiple/genética , Caracoles/microbiología , Citrobacter/genética , Citrobacter/efectos de los fármacos , Genómica/métodos , Antibacterianos/farmacología , Genoma Bacteriano , Pruebas de Sensibilidad Microbiana , Secuenciación Completa del Genoma , Filogenia
2.
J Glob Antimicrob Resist ; 36: 326-335, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38307251

RESUMEN

OBJECTIVES: The objective of the present study was to examine the diversity of Staphylococcus aureus from mastitis milk samples of cows in Rwanda. METHODS: A total of 1080 quarter milk samples from 279 dairy cows were collected in 80 different farms from all five provinces of Rwanda. In total, 135 S. aureus isolates were obtained and subjected to genotyping (spa typing, DNA microarray, whole-genome sequencing (WGS)), antimicrobial susceptibility testing (AST) and phenotypic profiling by Fourier Transform Infrared (FTIR) spectroscopy (including capsular serotyping). RESULTS: Resistance to penicillin and/or tetracycline was most frequently observed. Ten sequence types (STs) (ST1, ST151, ST152, ST5477, ST700, ST7110, ST7983, ST7984, ST8320, ST97) belonging to seven clonal complexes (CCs) (CC1, CC130, CC152, CC3591, CC3666, CC705, CC97) were detected. The Panton-Valentine leukocidin (PVL) genes (lukF-PV/lukS-PV), the bovine leukocidin genes (lukM/lukF-P83) and the human and bovine toxic shock syndrome toxin gene tst-1 variants were detected. FTIR-based capsular serotyping showed CC-specific differences. Most CC97 (cap5 allele) isolates were primarily nonencapsulated (82%), whereas isolates of CC3591 and CC3666 (cap8 allele) were mostly encapsulated (86.4% and 57.8%, respectively). Our results underline the widespread global distribution of cattle-adapted CC97. CONCLUSION: The presence of CC3591 and CC3666 in bovine mastitis suggests an important role in cattle health and dairy production in Rwanda. The results of the present study support the need for a rigorous One-Health Surveillance program of the bovine-human interface.


Asunto(s)
Mastitis , Infecciones Estafilocócicas , Femenino , Bovinos , Animales , Humanos , Staphylococcus aureus , Rwanda/epidemiología , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/veterinaria , Antibacterianos/farmacología
3.
Vet Microbiol ; 290: 109997, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237446

RESUMEN

Mycoplasma (M.) hyosynoviae is a commensal of the upper respiratory tract in swine, which has the potential to spread systemically, usually resulting in arthritis in fattening pigs and gilts. To date, very little is known about the epidemiology of M. hyosynoviae, mainly due to a lack of suitable typing methods. Therefore, this study aimed to develop both a conventional multi locus sequence typing (MLST) and a core genome (cg) MLST scheme. The development of the cgMLST was based on whole genome sequences of 64 strains isolated from pigs and wild boars during routine diagnostics as well as nine publicly available genomes. A cgMLST scheme containing 390 target genes was established using the Ridom© SeqSphere+ software. Using this scheme as a foundation, seven housekeeping genes were selected for conventional MLST based on their capability to reflect genome wide relatedness and subsequently, all 73 strains were typed by applying both methods. Core genome MLST results revealed a high diversity of the studied strain population and less than 100 allele differences between epidemiologically unrelated strains were only detected for four isolates from the US. On the other hand, seven clonal clusters (≤ 12 allele differences) comprising 20 isolates were identified. Comparison of the two typing methods resulted in highly congruent phylogenetic trees and an Adjusted Rand Coefficient of 0.893, while cgMLST showed marginally higher resolution when comparing closely related isolates, indicated by a slightly higher Simpson's ID (0.992) than conventional MLST (Simpson's ID = 0.990). Overall, both methods seem well suited for epidemiological analyses for scientific as well as diagnostic purposes. While MLST is faster and cheaper, cgMLST can be used to further differentiate closely related isolates.


Asunto(s)
Genoma Bacteriano , Mycoplasma hyosynoviae , Animales , Porcinos , Femenino , Tipificación de Secuencias Multilocus/métodos , Tipificación de Secuencias Multilocus/veterinaria , Mycoplasma hyosynoviae/genética , Filogenia , Epidemiología Molecular/métodos
4.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36626787

RESUMEN

Omics research inevitably involves the collection and analysis of big data, which can only be handled by automated approaches. Here we point out that the analysis of big data in the field of genomics dictates certain requirements, such as specialized software, quality control of input data, and simplification for visualization of the results. The latter results in a loss of information, as is exemplified for phylogenetic trees. Clear communication of big data analyses can be enhanced by novel visualization strategies. The interpretation of findings is sometimes hampered when dedicated analytical tools are not fully understood by microbiologists, while the researchers performing these analyses may not have a full overview of the biology of the microbes under study. These issues are illustrated here, using SARS-Cov-2 and Salmonella enterica as zoonotic examples. Whereas in scientific communications jargon should be avoided or explained, nomenclature to group similar organisms and distinguish these from more distant relatives is not only essential, but also influences the interpretation of results. Unfortunately, changes in taxonomically accepted names are now so frequent that they hamper rather than assist research, as is illustrated with difficulties of microbiome studies. Nomenclature to group viral isolates, as is done for SARS-Cov2, is also not without difficulties. Some weaknesses in current omics research stem from poor quality of data or biased databases, and problems can be magnified by machine learning approaches. Moreover, the overall opus of scientific publications can now be considered "big data", as is illustrated by the avalanche of COVID-19-related publications. The peer-review model of scientific publishing is only barely coping with this novel situation, resulting in retractions and the publication of bogus works. The avalanche of scientific publications that originated from the current pandemic can obstruct literature searches, and this will unfortunately continue over time.


Asunto(s)
COVID-19 , Animales , Humanos , SARS-CoV-2/genética , Filogenia , ARN Viral , Genómica , Zoonosis
5.
Pathogens ; 10(12)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34959535

RESUMEN

Infectious endocarditis (IE) in dogs is often associated with a high mortality rate as diagnostic work-up as well as antibiotic treatment might be challenging. The present case describes bacteremia in a dog caused by Achromobacter xylosoxidans, leading to an infectious endocarditis. Achromobacter xylosoxidans (A. xylosoxidans) is an aerobic Gram-negative rod-shaped bacterium, which has been associated with multiple nosocomial opportunistic diseases in human medicine. One such manifestation of A. xylosoxidans infection is endocarditis. A. xylosoxidans infections are challenging to treat due to the reduced effectiveness of a wide range of antimicrobial agents. To date, only a few case reports of infections with A. xylosoxidans in animals have been described. This is the first case report of A. xylosoxidans endocarditis in a dog. Whole-genome sequencing was performed to determine the sequencing type and to gain more information about this bacterium regarding its intrinsic resistance genes. With this case report, we seek to increase awareness of A. xylosoxidans as an opportunistic nosocomial pathogen in dogs and to provide a short summary regarding the current state of general knowledge and known resistance patterns.

6.
Microb Drug Resist ; 27(5): 685-690, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33090061

RESUMEN

The genetic mechanisms associated with acquisition of linezolid (LZD) resistance are diverse, including point mutations in the V domain of the 23S rRNA and the 50S ribosomal proteins as well as cfr, optrA, and/or poxtA genes, which may be plasmid- or chromosomally encoded. The aim of this study was to investigate through Whole Genome Sequencing (WGS)-based typing the presence and location of genes and point mutations associated with LZD resistance in two Enterococcus faecalis isolates from Upper Austrian patients. The isolates were retrieved during screening by LZD disk diffusion test of a total of 911 clinical E. faecalis isolates in 2017. The two E. faecalis isolates had LZD minimum inhibitory concentrations of 8 and 32 mg/L and were optrA-positive (ST476 and ST585). Bioinformatic analysis revealed the presence of optrA located in the chromosome of both isolates. One isolate carried the optrA gene in the transposon 6674, previously reported as chromosomally encoded, and the second isolate in fragments originating from the integrative plasmid pEF10748. Additional mechanisms of LZD resistance on the 23S rRNA and the 50S ribosomal proteins were detected. None of the patients reported travels to geographical areas with high LZD resistance or previous LZD treatments. This is the first report of optrA carrying E. faecalis, including characterization by WGS from Austria. LZD resistance in a low-prevalence setting is of concern and should be further monitored.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/genética , Linezolid/farmacología , Adulto , Austria/epidemiología , Femenino , Genes Bacterianos , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Oxazolidinonas/farmacología , Plásmidos , ARN Ribosómico 23S/genética , Estudios Retrospectivos , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...