Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Inherit Metab Dis ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973597

RESUMEN

The protein encoded by COQ7 is required for CoQ10 synthesis in humans, hydroxylating 3-demethoxyubiquinol (DMQ10) in the second to last steps of the pathway. COQ7 mutations lead to a primary CoQ10 deficiency syndrome associated with a pleiotropic neurological disorder. This study shows the clinical, physiological, and molecular characterization of four new cases of CoQ10 primary deficiency caused by five mutations in COQ7, three of which have not yet been described, inducing mitochondrial dysfunction in all patients. However, the specific combination of the identified variants in each patient generated precise pathophysiological and molecular alterations in fibroblasts, which would explain the differential in vitro response to supplementation therapy. Our results suggest that COQ7 dysfunction could be caused by specific structural changes that affect the interaction with COQ9 required for the DMQ10 presentation to COQ7, the substrate access to the active site, and the maintenance of the active site structure. Remarkably, patients' fibroblasts share transcriptional remodeling, supporting a modification of energy metabolism towards glycolysis, which could be an adaptive mechanism against CoQ10 deficiency. However, transcriptional analysis of mitochondria-associated pathways showed distinct and dramatic differences between patient fibroblasts, which correlated with the extent of pathophysiological and neurological alterations observed in the probands. Overall, this study suggests that the combination of precise genetic diagnostics and the availability of new structural models of human proteins could help explain the origin of phenotypic pleiotropy observed in some genetic diseases and the different responses to available therapies.

2.
Psychiatr Genet ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011718

RESUMEN

According to the neurodevelopmental hypothesis of schizophrenia, genetic predisposing factors cause abnormalities in neural functions, leading to the disease. A 2-year follow-up of a young woman with schizophrenia is presented. Karyotype, Affymetrix CytoScanTM 750K SNP array, and optical genome mapping ultra-high molecular weight were carried out. The case presented a severe and resistant to treatment schizophrenia. A 404 kbp microduplication in 2q13 (chr2 : 112088944-112492811; Hg19) was revealed, which includes an only gene (MIR4435-2HG, OMIM 617144). The Positive and Negative Syndrome Scale of Schizophrenia questionnaire showed a moderate improvement after 2 years, but functioning was still poor. The presented case had a microduplication of copy number variants at 2q13, previously linked to schizophrenia, but it only involved one gene, encoding a microRNA, which regulates the expression of candidate genes associated to neurodevelopment. This case provides further evidence of the importance of microRNA in the pathogenesis of schizophrenia.

3.
Genes (Basel) ; 15(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38927738

RESUMEN

Germline variants in the phosphatidylinositol glycan class A (PIGA) gene, which is involved in glycosylphosphatidylinositol (GPI) biosynthesis, cause multiple congenital anomalies-hypotonia-seizures syndrome 2 (MCAHS2) with X-linked recessive inheritance. The available literature has described a pattern of almost 100% X-chromosome inactivation in mothers carrying PIGA variants. Here, we report a male infant with MCAHS2 caused by a novel PIGA variant inherited from his mother, who has a non-skewed pattern of X inactivation. Phenotypic evidence supporting the pathogenicity of the variant was obtained by flow-cytometry tests. We propose that the assessment in neutrophils of the expression of GPI-anchored proteins (GPI-APs), especially CD16, should be considered in cases with variants of unknown significance with random X-inactivation in carrier mothers in order to clarify the pathogenic role of PIGA or other gene variants linked to the synthesis of GPI-APs.


Asunto(s)
Proteínas de la Membrana , Hipotonía Muscular , Inactivación del Cromosoma X , Humanos , Lactante , Masculino , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Proteínas de la Membrana/genética , Hipotonía Muscular/genética , Hipotonía Muscular/patología , Linaje , Convulsiones/genética , Inactivación del Cromosoma X/genética
4.
Genet Med ; 25(1): 37-48, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36322149

RESUMEN

PURPOSE: Biallelic PIGN variants have been described in Fryns syndrome, multiple congenital anomalies-hypotonia-seizure syndrome (MCAHS), and neurologic phenotypes. The full spectrum of clinical manifestations in relation to the genotypes is yet to be reported. METHODS: Genotype and phenotype data were collated and analyzed for 61 biallelic PIGN cases: 21 new and 40 previously published cases. Functional analysis was performed for 2 recurrent variants (c.2679C>G p.Ser893Arg and c.932T>G p.Leu311Trp). RESULTS: Biallelic-truncating variants were detected in 16 patients-10 with Fryns syndrome, 1 with MCAHS1, 2 with Fryns syndrome/MCAHS1, and 3 with neurologic phenotype. There was an increased risk of prenatal or neonatal death within this group (6 deaths were in utero or within 2 months of life; 6 pregnancies were terminated). Incidence of polyhydramnios, congenital anomalies (eg, diaphragmatic hernia), and dysmorphism was significantly increased. Biallelic missense or mixed genotype were reported in the remaining 45 cases-32 showed a neurologic phenotype and 12 had MCAHS1. No cases of diaphragmatic hernia or abdominal wall defects were seen in this group except patient 1 in which we found the missense variant p.Ser893Arg to result in functionally null alleles, suggesting the possibility of an undescribed functionally important region in the final exon. For all genotypes, there was complete penetrance for developmental delay and near-complete penetrance for seizures and hypotonia in patients surviving the neonatal period. CONCLUSION: We have expanded the described spectrum of phenotypes and natural history associated with biallelic PIGN variants. Our study shows that biallelic-truncating variants usually result in the more severe Fryns syndrome phenotype, but neurologic problems, such as developmental delay, seizures, and hypotonia, present across all genotypes. Functional analysis should be considered when the genotypes do not correlate with the predicted phenotype because there may be other functionally important regions in PIGN that are yet to be discovered.


Asunto(s)
Anomalías Múltiples , Trastornos Congénitos de Glicosilación , Epilepsia , Hernia Diafragmática , Embarazo , Femenino , Humanos , Hipotonía Muscular/genética , Epilepsia/genética , Anomalías Múltiples/genética , Hernia Diafragmática/genética , Convulsiones/genética , Fenotipo , Estudios de Asociación Genética , Síndrome
5.
Epilepsia ; 63(4): 974-991, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35179230

RESUMEN

OBJECTIVE: Epilepsy is common in patients with PIGN diseases due to biallelic variants; however, limited epilepsy phenotyping data have been reported. We describe the epileptology of PIGN encephalopathy. METHODS: We recruited patients with epilepsy due to biallelic PIGN variants and obtained clinical data regarding age at seizure onset/offset and semiology, development, medical history, examination, electroencephalogram, neuroimaging, and treatment. Seizure and epilepsy types were classified. RESULTS: Twenty six patients (13 female) from 26 families were identified, with mean age 7 years (range = 1 month to 21 years; three deceased). Abnormal development at seizure onset was present in 25 of 26. Developmental outcome was most frequently profound (14/26) or severe (11/26). Patients presented with focal motor (12/26), unknown onset motor (5/26), focal impaired awareness (1/26), absence (2/26), myoclonic (2/26), myoclonic-atonic (1/26), and generalized tonic-clonic (2/26) seizures. Twenty of 26 were classified as developmental and epileptic encephalopathy (DEE): 55% (11/20) focal DEE, 30% (6/20) generalized DEE, and 15% (3/20) combined DEE. Six had intellectual disability and epilepsy (ID+E): two generalized and four focal epilepsy. Mean age at seizure onset was 13 months (birth to 10 years), with a lower mean onset in DEE (7 months) compared with ID+E (33 months). Patients with DEE had drug-resistant epilepsy, compared to 4/6 ID+E patients, who were seizure-free. Hyperkinetic movement disorder occurred in 13 of 26 patients. Twenty-seven of 34 variants were novel. Variants were truncating (n = 7), intronic and predicted to affect splicing (n = 7), and missense or inframe indels (n = 20, of which 11 were predicted to affect splicing). Seven variants were recurrent, including p.Leu311Trp in 10 unrelated patients, nine with generalized seizures, accounting for nine of the 11 patients in this cohort with generalized seizures. SIGNIFICANCE: PIGN encephalopathy is a complex autosomal recessive disorder associated with a wide spectrum of epilepsy phenotypes, typically with substantial profound to severe developmental impairment.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Discapacidad Intelectual , Electroencefalografía , Epilepsia/diagnóstico por imagen , Epilepsia/genética , Femenino , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/genética , Fenotipo , Convulsiones/genética
6.
Am J Hum Genet ; 108(5): 929-941, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33811806

RESUMEN

Proteins involved in transcriptional regulation harbor a demonstrated enrichment of mutations in neurodevelopmental disorders. The Sin3 (Swi-independent 3)/histone deacetylase (HDAC) complex plays a central role in histone deacetylation and transcriptional repression. Among the two vertebrate paralogs encoding the Sin3 complex, SIN3A variants cause syndromic intellectual disability, but the clinical consequences of SIN3B haploinsufficiency in humans are uncharacterized. Here, we describe a syndrome hallmarked by intellectual disability, developmental delay, and dysmorphic facial features with variably penetrant autism spectrum disorder, congenital malformations, corpus callosum defects, and impaired growth caused by disruptive SIN3B variants. Using chromosomal microarray or exome sequencing, and through international data sharing efforts, we identified nine individuals with heterozygous SIN3B deletion or single-nucleotide variants. Five individuals harbor heterozygous deletions encompassing SIN3B that reside within a ∼230 kb minimal region of overlap on 19p13.11, two individuals have a rare nonsynonymous substitution, and two individuals have a single-nucleotide deletion that results in a frameshift and predicted premature termination codon. To test the relevance of SIN3B impairment to measurable aspects of the human phenotype, we disrupted the orthologous zebrafish locus by genome editing and transient suppression. The mutant and morphant larvae display altered craniofacial patterning, commissural axon defects, and reduced body length supportive of an essential role for Sin3 function in growth and patterning of anterior structures. To investigate further the molecular consequences of SIN3B variants, we quantified genome-wide enhancer and promoter activity states by using H3K27ac ChIP-seq. We show that, similar to SIN3A mutations, SIN3B disruption causes hyperacetylation of a subset of enhancers and promoters in peripheral blood mononuclear cells. Together, these data demonstrate that SIN3B haploinsufficiency leads to a hitherto unknown intellectual disability/autism syndrome, uncover a crucial role of SIN3B in the central nervous system, and define the epigenetic landscape associated with Sin3 complex impairment.


Asunto(s)
Trastorno del Espectro Autista/genética , Haploinsuficiencia/genética , Histona Desacetilasas/metabolismo , Discapacidad Intelectual/genética , Proteínas Represoras/genética , Acetilación , Adolescente , Animales , Niño , Preescolar , Variaciones en el Número de Copia de ADN/genética , Femenino , Histonas/química , Histonas/metabolismo , Humanos , Lactante , Larva/genética , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Modelos Moleculares , Mutación , Proteínas Represoras/deficiencia , Proteínas Represoras/metabolismo , Síndrome , Adulto Joven , Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
7.
Sci Rep ; 11(1): 6752, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762699

RESUMEN

Development of assisted reproductive technologies to address infertility has favored the birth of many children in the last years. The majority of children born with these treatments are healthy, but some concerns remain on the safety of these medical procedures. We have retrospectively analyzed both the fertilization method and the microarray results in all those children born between 2010 and 2019 with multiple congenital anomalies, developmental delay and/or autistic spectrum disorder (n = 486) referred for array study in our center. This analysis showed a significant excess of pathogenic copy number variants among those patients conceived after in vitro fertilization with donor oocyte with respect to those patients conceived by natural fertilization (p = 0.0001). On the other hand, no significant excess of pathogenic copy number variants was observed among patients born by autologous oocyte in vitro fertilization. Further studies are necessary to confirm these results and in order to identify the factors that may contribute to an increased risk of genomic rearrangements, as well as consider the screening for genomic alterations after oocyte donation in prenatal diagnosis.


Asunto(s)
Variaciones en el Número de Copia de ADN , Fertilización In Vitro/efectos adversos , Predisposición Genética a la Enfermedad , Oocitos/metabolismo , Técnicas Reproductivas Asistidas/efectos adversos , Técnicas Reproductivas Asistidas/estadística & datos numéricos , Niño , Cromosomas Humanos Par 2 , Femenino , Humanos , Cariotipificación , Masculino , Oocitos/citología , Polimorfismo de Nucleótido Simple , Prevalencia , Medición de Riesgo , Factores de Riesgo
8.
Pediatr Res ; 90(2): 284-288, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33177673

RESUMEN

Cerebral palsy (CP) is a heterogeneous neurodevelopmental disorder that causes movement and postural disabilities. Recent research studies focused on genetic diagnosis in patients with CP of unknown etiology. The present study was carried out in 20 families with one family member affected with idiopathic CP. Chromosomal microarray and exome sequencing techniques were performed in all patients. Chromosomal microarray analysis did not show any pathological or probable pathological structural variant. However, the next-generation sequencing study showed a high diagnostic yield. We report 11/20 patients (55%) with different pathogenic or potentially pathogenic variants detected by exome sequencing analysis: five patients with mutations in genes related to hereditary spastic paraplegia, two with mutations in genes related to Aicardi-Goutières syndrome, three with mutations in genes related to developmental/epileptic encephalopathies, and one with a mutation in the PGK1 gene. The accurate and precise patients' selection, the use of a high-throughput genetic platform, the selection of adequate target genes, and the application of rigorous criteria for the clinical interpretation are the most important elements for a good diagnostic performance. Based on our findings, next-generation sequencing should be considered in patients with cryptogenic CP as the first line of genetic workup. IMPACT: Sequencing techniques in CP of uncertain etiology provides a diagnostic yield of 55%. The appropriate selection of cases optimizes the diagnostic yield. NGS facilitate better understanding of new phenotypes of certain genetic diseases.


Asunto(s)
Parálisis Cerebral/diagnóstico , Parálisis Cerebral/genética , Análisis Mutacional de ADN , Heterogeneidad Genética , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Adolescente , Niño , Preescolar , Femenino , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , Masculino , Fenotipo , Valor Predictivo de las Pruebas , Factores de Riesgo
9.
Clin Genet ; 97(4): 610-620, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32043567

RESUMEN

MECP2 duplication syndrome (MDS) is an X-linked neurodevelopmental disorder characterized by a severe to profound intellectual disability, early onset hypotonia and diverse psycho-motor and behavioural features. To date, fewer than 200 cases have been published. We report the clinical and molecular characterization of a Spanish MDS cohort that included 19 boys and 2 girls. Clinical suspicions were confirmed by array comparative genomic hybridization and multiplex ligation-dependent probe amplification (MLPA). Using, a custom in-house MLPA assay, we performed a thorough study of the minimal duplicated region, from which we concluded a complete duplication of both MECP2 and IRAK1 was necessary for a correct MDS diagnosis, as patients with partial MECP2 duplications lacked some typical clinical traits present in other MDS patients. In addition, the duplication location may be related to phenotypic severity. This observation may provide a new approach for genotype-phenotype correlations, and thus more personalized genetic counselling.


Asunto(s)
Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Quinasas Asociadas a Receptores de Interleucina-1/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteína 2 de Unión a Metil-CpG/genética , Adolescente , Adulto , Niño , Preescolar , Cromosomas Humanos X/genética , Hibridación Genómica Comparativa , Discapacidades del Desarrollo/patología , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/patología , Hipotonía Muscular/genética , Hipotonía Muscular/patología , Linaje , Medicina de Precisión , Adulto Joven
10.
J Pediatr Genet ; 9(1): 53-57, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31976145

RESUMEN

Langer-Giedion's syndrome (LGS) or trichorhinophalangeal syndrome type II (TRPS II; MIM:150230) is a contiguous gene deletion syndrome caused by the haploinsufficiency of the TRPS1 and EXT1 genes. Cornelia de Lange's syndrome (CdLS) is a genetically heterogeneous dysmorphic syndrome where heterozygous mutations of RAD21 gene have been associated with a mild clinical presentation (CDLS type 4; MIM: 614701). We report a female patient with a 2.3-Mb interstitial deletion at 8q23.3-q24.1 encompassing EXT1 and RAD21 genes but not TRPS1 . Clinical findings in this patient are correlated with a mixed phenotype of LGS and CdLS type 4.

11.
Int J Endocrinol Metab ; 16(3): e67329, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30323850

RESUMEN

INTRODUCTION: Schaaf-Yang syndrome (SYS) is caused by truncating point mutations of the paternal allele of MAGEL2, an imprinted gene located in the critical region of Prader-Willi syndrome (PWS). These patients present a phenotype with neurodevelopmental delay, hypotonia, joint contractures, and a particularly high prevalence of autism (up to 75% in affected individuals). The loss of function of MAGEL2 is suggested to contribute to endocrine hypothalamic dysfunction in individuals with PWS. CASE PRESENTATION: The current study presented the case of a patient with SYS and a novel de novo truncating mutation of MAGEL2 and phenotypic characteristics typical of this Prader-Willi-like syndrome and also including partial hypopituitarism, hypothyroidism, growth hormone deficiency, and hyperprolactinemia. CONCLUSIONS: The clinical and molecular similarities between SYS and PWS suggested the need for a thorough endocrinological follow-up to improve the prognosis and long-term quality of life for patients with SYS.

12.
Am J Med Genet A ; 176(11): 2259-2275, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30194818

RESUMEN

De novo germline mutations in GNB1 have been associated with a neurodevelopmental phenotype. To date, 28 patients with variants classified as pathogenic have been reported. We add 18 patients with de novo mutations to this cohort, including a patient with mosaicism for a GNB1 mutation who presented with a milder phenotype. Consistent with previous reports, developmental delay in these patients was moderate to severe, and more than half of the patients were non-ambulatory and nonverbal. The most observed substitution affects the p.Ile80 residue encoded in exon 6, with 28% of patients carrying a variant at this residue. Dystonia and growth delay were observed more frequently in patients carrying variants in this residue, suggesting a potential genotype-phenotype correlation. In the new cohort of 18 patients, 50% of males had genitourinary anomalies and 61% of patients had gastrointestinal anomalies, suggesting a possible association of these findings with variants in GNB1. In addition, cutaneous mastocytosis, reported once before in a patient with a GNB1 variant, was observed in three additional patients, providing further evidence for an association to GNB1. We will review clinical and molecular data of these new cases and all previously reported cases to further define the phenotype and establish possible genotype-phenotype correlations.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/genética , Estudios de Asociación Genética , Mutación/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Epilepsia/genética , Femenino , Subunidades beta de la Proteína de Unión al GTP/química , Humanos , Masculino , Sistema Nervioso/crecimiento & desarrollo , Fenotipo , Embarazo , Estructura Terciaria de Proteína
13.
Am J Hum Genet ; 103(2): 305-316, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30057029

RESUMEN

Next-generation sequencing combined with international data sharing has enormously facilitated identification of new disease-associated genes and mutations. This is particularly true for genetically extremely heterogeneous entities such as neurodevelopmental disorders (NDDs). Through exome sequencing and world-wide collaborations, we identified and assembled 20 individuals with de novo variants in FBXO11. They present with mild to severe developmental delay associated with a range of features including short (4/20) or tall (2/20) stature, obesity (5/20), microcephaly (4/19) or macrocephaly (2/19), behavioral problems (17/20), seizures (5/20), cleft lip or palate or bifid uvula (3/20), and minor skeletal anomalies. FBXO11 encodes a member of the F-Box protein family, constituting a subunit of an E3-ubiquitin ligase complex. This complex is involved in ubiquitination and proteasomal degradation and thus in controlling critical biological processes by regulating protein turnover. The identified de novo aberrations comprise two large deletions, ten likely gene disrupting variants, and eight missense variants distributed throughout FBXO11. Structural modeling for missense variants located in the CASH or the Zinc-finger UBR domains suggests destabilization of the protein. This, in combination with the observed spectrum and localization of identified variants and the lack of apparent genotype-phenotype correlations, is compatible with loss of function or haploinsufficiency as an underlying mechanism. We implicate de novo missense and likely gene disrupting variants in FBXO11 in a neurodevelopmental disorder with variable intellectual disability and various other features.


Asunto(s)
Proteínas F-Box/genética , Variación Genética/genética , Trastornos del Neurodesarrollo/genética , Proteína-Arginina N-Metiltransferasas/genética , Niño , Exoma/genética , Femenino , Estudios de Asociación Genética/métodos , Humanos , Discapacidad Intelectual/genética , Masculino , Microcefalia/genética , Complejo de la Endopetidasa Proteasomal/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética , Secuenciación del Exoma/métodos
14.
Eur J Hum Genet ; 26(1): 64-74, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29180823

RESUMEN

Whole-gene duplications and missense variants in the HUWE1 gene (NM_031407.6) have been reported in association with intellectual disability (ID). Increased gene dosage has been observed in males with non-syndromic mild to moderate ID with speech delay. Missense variants reported previously appear to be associated with severe ID in males and mild or no ID in obligate carrier females. Here, we report the largest cohort of patients with HUWE1 variants, consisting of 14 females and 7 males, with 15 different missense variants and one splice site variant. Clinical assessment identified common clinical features consisting of moderate to profound ID, delayed or absent speech, short stature with small hands and feet and facial dysmorphism consisting of a broad nasal tip, deep set eyes, epicanthic folds, short palpebral fissures, and a short philtrum. We describe for the first time that females can be severely affected, despite preferential inactivation of the affected X chromosome. Three females with the c.329 G > A p.Arg110Gln variant, present with a phenotype of mild ID, specific facial features, scoliosis and craniosynostosis, as reported previously in a single patient. In these females, the X inactivation pattern appeared skewed in favour of the affected transcript. In summary, HUWE1 missense variants may cause syndromic ID in both males and females.


Asunto(s)
Genes Dominantes , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Discapacidad Intelectual/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Adolescente , Adulto , Niño , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Humanos , Discapacidad Intelectual/patología , Masculino , Mutación Missense , Síndrome
15.
Int J Genomics ; 2017: 4798474, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28630856

RESUMEN

We report on three nonrelated patients with intellectual disability and CNVs that give rise to three new chimeric genes. All the genes forming these fusion transcripts may have an important role in central nervous system development and/or in gene expression regulation, and therefore not only their deletion or duplication but also the resulting chimeric gene may contribute to the phenotype of the patients. Deletions and duplications are usually pathogenic when affecting dose-sensitive genes. Alternatively, a chimeric gene may also be pathogenic by different gain-of-function mechanisms that are not restricted to dose-sensitive genes: the emergence of a new polypeptide that combines functional domains from two different genes, the deregulated expression of any coding sequence by the promoter region of a neighboring gene, and/or a putative dominant-negative effect due to the preservation of functional domains of partially truncated proteins. Fusion oncogenes are well known, but in other pathologies, the search for chimeric genes is disregarded. According to our findings, we hypothesize that the frequency of fusion transcripts may be much higher than suspected, and it should be taken into account in the array-CGH analyses of patients with intellectual disability.

16.
J Med Genet ; 54(2): 87-92, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27620904

RESUMEN

BACKGROUND: Intellectual disability is a very complex condition where more than 600 genes have been reported. Due to this extraordinary heterogeneity, a large proportion of patients remain without a specific diagnosis and genetic counselling. The need for new methodological strategies in order to detect a greater number of mutations in multiple genes is therefore crucial. METHODS: In this work, we screened a large panel of 1256 genes (646 pathogenic, 610 candidate) by next-generation sequencing to determine the molecular aetiology of syndromic intellectual disability. A total of 92 patients, negative for previous genetic analyses, were studied together with their parents. Clinically relevant variants were validated by conventional sequencing. RESULTS: A definitive diagnosis was achieved in 29 families by testing the 646 known pathogenic genes. Mutations were found in 25 different genes, where only the genes KMT2D, KMT2A and MED13L were found mutated in more than one patient. A preponderance of de novo mutations was noted even among the X linked conditions. Additionally, seven de novo probably pathogenic mutations were found in the candidate genes AGO1, JARID2, SIN3B, FBXO11, MAP3K7, HDAC2 and SMARCC2. Altogether, this means a diagnostic yield of 39% of the cases (95% CI 30% to 49%). CONCLUSIONS: The developed panel proved to be efficient and suitable for the genetic diagnosis of syndromic intellectual disability in a clinical setting. Next-generation sequencing has the potential for high-throughput identification of genetic variations, although the challenges of an adequate clinical interpretation of these variants and the knowledge on further unknown genes causing intellectual disability remain to be solved.


Asunto(s)
Exoma/genética , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Discapacidad Intelectual/genética , Femenino , Humanos , Discapacidad Intelectual/patología , Masculino , Mutación
17.
Pediatr Res ; 80(6): 809-815, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27500536

RESUMEN

BACKGROUND: Mutations in the X-linked gene MED12 cause at least three different, but closely related, entities of syndromic intellectual disability. Recently, a new syndrome caused by MED13L deleterious variants has been described, which shows similar clinical manifestations including intellectual disability, hypotonia, and other congenital anomalies. METHODS: Genotyping of 1,256 genes related with neurodevelopment was performed by next-generation sequencing in three unrelated patients and their healthy parents. Clinically relevant findings were confirmed by conventional sequencing. RESULTS: Each patient showed one de novo variant not previously reported in the literature or databases. Two different missense variants were found in the MED12 or MED13L genes and one nonsense mutation was found in the MED13L gene. CONCLUSION: The phenotypic consequences of these mutations are closely related and/or have been previously reported in one or other gene. Additionally, MED12 and MED13L code for two closely related partners of the mediator kinase module. Consequently, we propose the concept of a common MED12/MED13L clinical spectrum, encompassing Opitz-Kaveggia syndrome, Lujan-Fryns syndrome, Ohdo syndrome, MED13L haploinsufficiency syndrome, and others.


Asunto(s)
Discapacidad Intelectual/genética , Complejo Mediador/genética , Mutación , Anomalías Múltiples/genética , Sustitución de Aminoácidos , Niño , Codón sin Sentido , Análisis Mutacional de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Proteínas Mutantes/genética , Mutación Missense , Fenotipo , Síndrome , Adulto Joven
18.
Hum Mutat ; 37(8): 804-11, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27159028

RESUMEN

Intellectual disability (ID) is a heterogeneous disorder with an unknown molecular etiology in many cases. Previously, X-linked ID (XLID) studies focused on males because of the hemizygous state of their X chromosome. Carrier females are generally unaffected because of the presence of a second normal allele, or inactivation of the mutant X chromosome in most of their cells (skewing). However, in female ID patients, we hypothesized that the presence of skewing of X-inactivation would be an indicator for an X chromosomal ID cause. We analyzed the X-inactivation patterns of 288 females with ID, and found that 22 (7.6%) had extreme skewing (>90%), which is significantly higher than observed in the general population (3.6%; P = 0.029). Whole-exome sequencing of 19 females with extreme skewing revealed causal variants in six females in the XLID genes DDX3X, NHS, WDR45, MECP2, and SMC1A. Interestingly, variants in genes escaping X-inactivation presumably cause both XLID and skewing of X-inactivation in three of these patients. Moreover, variants likely accounting for skewing only were detected in MED12, HDAC8, and TAF9B. All tested candidate causative variants were de novo events. Hence, extreme skewing is a good indicator for the presence of X-linked variants in female patients.


Asunto(s)
Variación Genética , Discapacidad Intelectual/genética , Análisis de Secuencia de ADN/métodos , Inactivación del Cromosoma X , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , ARN Helicasas DEAD-box/genética , Exoma , Femenino , Humanos , Proteínas de la Membrana , Proteína 2 de Unión a Metil-CpG/genética , Proteínas Nucleares/genética
19.
Am J Hum Genet ; 97(6): 922-32, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26637982

RESUMEN

We describe an X-linked genetic syndrome associated with mutations in TAF1 and manifesting with global developmental delay, intellectual disability (ID), characteristic facial dysmorphology, generalized hypotonia, and variable neurologic features, all in male individuals. Simultaneous studies using diverse strategies led to the identification of nine families with overlapping clinical presentations and affected by de novo or maternally inherited single-nucleotide changes. Two additional families harboring large duplications involving TAF1 were also found to share phenotypic overlap with the probands harboring single-nucleotide changes, but they also demonstrated a severe neurodegeneration phenotype. Functional analysis with RNA-seq for one of the families suggested that the phenotype is associated with downregulation of a set of genes notably enriched with genes regulated by E-box proteins. In addition, knockdown and mutant studies of this gene in zebrafish have shown a quantifiable, albeit small, effect on a neuronal phenotype. Our results suggest that mutations in TAF1 play a critical role in the development of this X-linked ID syndrome.


Asunto(s)
Discapacidades del Desarrollo/genética , Histona Acetiltransferasas/genética , Discapacidad Intelectual/genética , Enfermedades Neurodegenerativas/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/genética , Adolescente , Animales , Niño , Preescolar , Discapacidades del Desarrollo/metabolismo , Discapacidades del Desarrollo/patología , Modelos Animales de Enfermedad , Elementos E-Box , Facies , Familia , Regulación de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Humanos , Lactante , Patrón de Herencia , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Masculino , Mutación , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Linaje , Fenotipo , Transducción de Señal , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Adulto Joven , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...