Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Anesthesiology ; 140(2): 272-283, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37725756

RESUMEN

BACKGROUND: The efficiency of descending pain modulation, commonly assessed with the conditioned pain modulation procedure, is diminished in patients with chronic pain. The authors hypothesized that the efficiency of pain modulation is controlled by cortical opioid circuits. METHODS: This study evaluated the effects of µ opioid receptor activation in the anterior cingulate cortex on descending control of nociception, a preclinical correlate of conditioned pain modulation, in male Sprague-Dawley rats with spinal nerve ligation-induced chronic pain or in sham-operated controls. Additionally, the study explored the consequences of respective activation or inhibition of κ opioid receptor in the anterior cingulate cortex of naive rats or animals with neuropathic pain. Descending control of nociception was measured as the hind paw withdrawal response to noxious pressure (test stimulus) in the absence or presence of capsaicin injection in the forepaw (conditioning stimulus). RESULTS: Descending control of nociception was diminished in the ipsilateral, but not contralateral, hind paw of rats with spinal nerve ligation. Bilateral administration of morphine in the anterior cingulate cortex had no effect in shams but restored diminished descending control of nociception without altering hypersensitivity in rats with neuropathic pain. Bilateral anterior cingulate cortex microinjection of κ opioid receptor antagonists, including nor-binaltorphimine and navacaprant, also re-established descending control of nociception in rats with neuropathic pain without altering hypersensitivity and with no effect in shams. Conversely, bilateral injection of a κ opioid receptor agonist, U69,593, in the anterior cingulate cortex of naive rats inhibited descending control of nociception without altering withdrawal thresholds. CONCLUSIONS: Anterior cingulate cortex κ opioid receptor activation therefore diminishes descending control of nociception both in naive animals and as an adaptive response to chronic pain, likely by enhancing net descending facilitation. Descending control of nociception can be restored by activation of µ opioid receptors in the anterior cingulate cortex, but also by κ opioid receptor antagonists, providing a nonaddictive alternative to opioid analgesics. Navacaprant is now in advanced clinical trials.


Asunto(s)
Dolor Crónico , Neuralgia , Humanos , Ratas , Masculino , Animales , Receptores Opioides kappa/metabolismo , Ratas Sprague-Dawley , Antagonistas de Narcóticos/farmacología , Giro del Cíngulo , Nocicepción , Dimensión del Dolor/métodos , Analgésicos Opioides/farmacología
2.
Brain ; 146(3): 1186-1199, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35485490

RESUMEN

Increased vigilance in settings of potential threats or in states of vulnerability related to pain is important for survival. Pain disrupts sleep and conversely, sleep disruption enhances pain, but the underlying mechanisms remain unknown. Chronic pain engages brain stress circuits and increases secretion of dynorphin, an endogenous ligand of the kappa opioid receptor (KOR). We therefore hypothesized that hypothalamic dynorphin/KOR signalling may be a previously unknown mechanism that is recruited in pathological conditions requiring increased vigilance. We investigated the role of KOR in wakefulness, non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep in freely moving naïve mice and in mice with neuropathic pain induced by partial sciatic nerve ligation using EEG/EMG recordings. Systemic continuous administration of U69,593, a KOR agonist, over 5 days through an osmotic minipump decreased the amount of NREM and REM sleep and increased sleep fragmentation in naïve mice throughout the light-dark sleep cycle. We used KORcre mice to selectively express a Gi-coupled designer receptor activated by designer drugs (Gi-DREADD) in KORcre neurons of the hypothalamic paraventricular nucleus, a key node of the hypothalamic-pituitary-adrenal stress response. Sustained activation of Gi-DREADD with clozapine-N-oxide delivered in drinking water over 4 days, disrupted sleep in these mice in a similar way as systemic U69,593. Mice with chronic neuropathic pain also showed disrupted NREM and total sleep that was normalized by systemic administration of two structurally different KOR antagonists, norbinaltorphimine and NMRA-140, currently in phase II clinical development, or by CRISPR/Cas9 editing of paraventricular nucleus KOR, consistent with endogenous KOR activation disrupting sleep in chronic pain. Unexpectedly, REM sleep was diminished by either systemic KOR antagonist or by CRISPR/Cas9 editing of paraventricular nucleus KOR in sham-operated mice. Our findings reveal previously unknown physiological and pathophysiological roles of dynorphin/KOR in eliciting arousal. Physiologically, dynorphin/KOR signalling affects transitions between sleep stages that promote REM sleep. Furthermore, while KOR antagonists do not promote somnolence in the absence of pain, they normalized disrupted sleep in chronic pain, revealing a pathophysiological role of KOR signalling that is selectively recruited to promote vigilance, increasing chances of survival. Notably, while this mechanism is likely beneficial in the short-term, disruption of the homeostatic need for sleep over longer periods may become maladaptive resulting in sustained pain chronicity. A novel approach for treatment of chronic pain may thus result from normalization of chronic pain-related sleep disruption by KOR antagonism.


Asunto(s)
Dolor Crónico , Neuralgia , Ratones , Animales , Receptores Opioides kappa , Dinorfinas , Vigilia , Antagonistas de Narcóticos/farmacología
4.
EMBO Mol Med ; 13(1): e13533, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33326687

RESUMEN

The sphingosine-1-phosphate (S1P) is a lysophospholipid signaling molecule with important functions in many physiological and pathological conditions, including viral infection. In this issue of EMBO Molecular Medicine, Marfia et al present a risk stratification based on S1P serum level as a novel prognostic indicator for COVID-19 severity.


Asunto(s)
COVID-19 , Humanos , Lisofosfolípidos , Medición de Riesgo , SARS-CoV-2 , Esfingosina/análogos & derivados
5.
Am J Respir Cell Mol Biol ; 63(2): 209-218, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32289229

RESUMEN

In a proportion of patients with hypersensitivity pneumonitis, the biological and environmental factors that sustain inflammation are ill defined, resulting in no effective treatment option. Bioaerosols found in occupational settings are complex and often include Toll-like receptor ligands, such as endotoxins. How Toll-like receptor ligands contribute to the persistence of hypersensitivity pneumonitis, however, remains poorly understood. In a previous study, we found that an S1P1 (sphingosine-1-phosphate receptor 1) agonist prevented the reactivation of antigen-driven B-cell responses in the lung. Here, we assessed the impact of endotoxins on B-cell activation in preexisting hypersensitivity pneumonitis and the role of S1P1 in this phenomenon. The impact of endotoxins on pre-established hypersensitivity pneumonitis was studied in vivo. S1P1 levels were tracked on B cells in the course of the disease using S1P1-eGFP knockin mice, and the role of S1P1 on B-cell functions was assessed using pharmacological tools. S1P1 was found on B cells in experimental hypersensitivity pneumonitis. Endotoxin exposure enhanced neutrophil accumulation in the BAL of mice with experimental hypersensitivity pneumonitis. This was associated with enhanced CD69 cell-surface expression on lymphocytes in the BAL. In isolated B cells, endotoxins increased cell-surface levels of costimulatory molecules and CD69, which was prevented by an S1P1 agonist. S1P1 modulators also reduced TNF production by B cells and their capacity to trigger T-cell cooperation ex vivo. An S1P1 ligand directly inhibited endotoxin-induced B-cell activation.


Asunto(s)
Alveolitis Alérgica Extrínseca/inmunología , Linfocitos B/inmunología , Endotoxinas/inmunología , Receptores de Esfingosina-1-Fosfato/inmunología , Animales , Antígenos CD/inmunología , Antígenos de Diferenciación de Linfocitos T/inmunología , Femenino , Lectinas Tipo C/inmunología , Activación de Linfocitos/inmunología , Ratones , Neutrófilos/inmunología
6.
Int J Neuropsychopharmacol ; 22(11): 735-745, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31613314

RESUMEN

BACKGROUND: New treatments for stress-related disorders including depression, anxiety, and substance use disorder are greatly needed. Kappa opioid receptors are expressed in the central nervous system, including areas implicated in analgesia and affective state. Although kappa opioid receptor agonists share the antinociceptive effects of mu opioid receptor agonists, they also tend to produce negative affective states. In contrast, selective kappa opioid receptor antagonists have antidepressant- and anxiolytic-like effects, stimulating interest in their therapeutic potential. The prototypical kappa opioid receptor antagonists (e.g., norBNI, JDTic) have an exceptionally long duration of action that complicates their use in humans, particularly in tests to establish safety. This study was designed to test dose- and time-course effects of novel kappa opioid receptor antagonists with the goal of identifying short-acting lead compounds for future medication development. METHODS: We screened 2 novel, highly selective kappa opioid receptor antagonists (CYM-52220 and CYM-52288) with oral efficacy in the warm water tail flick assay in rats to determine initial dose and time course effects. For comparison, we tested existing kappa opioid receptor antagonists JDTic and LY-2456302 (also known as CERC-501 or JNJ-67953964). RESULTS: In the tail flick assay, the rank order of duration of action for the antagonists was LY-2456302 < CYM-52288 < CYM-52220 << JDTic. Furthermore, LY-2456302 blocked the depressive (anhedonia-producing) effects of the kappa opioid receptor agonist U50,488 in the intracranial self-stimulation paradigm, albeit at a higher dose than that needed for analgesic blockade in the tail flick assay. CONCLUSIONS: These results suggest that structurally diverse kappa opioid receptor antagonists can have short-acting effects and that LY-2456302 reduces anhedonia as measured in the intracranial self-stimulation test.


Asunto(s)
3,4-Dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclohexil)-bencenacetamida, (trans)-Isómero/farmacología , Analgésicos no Narcóticos/farmacología , Ansiolíticos/farmacología , Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Benzamidas/farmacología , Antagonistas de Narcóticos/farmacología , Piperidinas/farmacología , Pirrolidinas/farmacología , Receptores Opioides kappa/antagonistas & inhibidores , Tetrahidroisoquinolinas/farmacología , 3,4-Dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclohexil)-bencenacetamida, (trans)-Isómero/administración & dosificación , Analgésicos no Narcóticos/administración & dosificación , Animales , Ansiolíticos/administración & dosificación , Antidepresivos/administración & dosificación , Benzamidas/administración & dosificación , Desarrollo de Medicamentos , Evaluación Preclínica de Medicamentos , Masculino , Antagonistas de Narcóticos/administración & dosificación , Piperidinas/administración & dosificación , Pirrolidinas/administración & dosificación , Ratas , Ratas Sprague-Dawley , Receptores Opioides kappa/agonistas , Tetrahidroisoquinolinas/administración & dosificación
7.
Proc Natl Acad Sci U S A ; 116(17): 8360-8369, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30971495

RESUMEN

In Ig light-chain (LC) amyloidosis (AL), the unique antibody LC protein that is secreted by monoclonal plasma cells in each patient misfolds and/or aggregates, a process leading to organ degeneration. As a step toward developing treatments for AL patients with substantial cardiac involvement who have difficulty tolerating existing chemotherapy regimens, we introduce small-molecule kinetic stabilizers of the native dimeric structure of full-length LCs, which can slow or stop the amyloidogenicity cascade at its origin. A protease-coupled fluorescence polarization-based high-throughput screen was employed to identify small molecules that kinetically stabilize LCs. NMR and X-ray crystallographic data demonstrate that at least one structural family of hits bind at the LC-LC dimerization interface within full-length LCs, utilizing variable-domain residues that are highly conserved in most AL patients. Stopping the amyloidogenesis cascade at the beginning is a proven strategy to ameliorate postmitotic tissue degeneration.


Asunto(s)
Amiloide , Cadenas Ligeras de Inmunoglobulina , Estabilidad Proteica , Amiloide/química , Amiloide/metabolismo , Amiloidosis , Ensayos Analíticos de Alto Rendimiento , Humanos , Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/metabolismo , Cinética , Multimerización de Proteína
8.
J Med Chem ; 62(4): 1761-1780, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30707578

RESUMEN

κ opioid receptor (KOR) antagonists are potential pharmacotherapies for the treatment of migraine and stress-related mood disorders including depression, anxiety, and drug abuse, thus the development of novel KOR antagonists with an improved potency/selectivity profile and medication-like duration of action has attracted the interest of the medicinal chemistry community. In this paper, we describe the discovery of 1-(6-ethyl-8-fluoro-4-methyl-3-(3-methyl-1,2,4-oxadiazol-5-yl)quinolin-2-yl)- N-(tetrahydro-2 H-pyran-4-yl)piperidin-4 amine (CYM-53093, BTRX-335140) as a potent and selective KOR antagonist, endowed with favorable in vitro ADMET and in vivo pharmacokinetic profiles and medication-like duration of action in rat pharmacodynamic experiments. Orally administered CYM-53093 showed robust efficacy in antagonizing KOR agonist-induced prolactin secretion and in tail-flick analgesia in mice. CYM-53093 exhibited a broad selectivity over a panel of off-target proteins. This compound is in phase 1 clinical trials for the treatment of neuropsychiatric disorders wherein dynorphin is thought to contribute to the underlying pathophysiology.


Asunto(s)
Aminoquinolinas/uso terapéutico , Antagonistas de Narcóticos/uso terapéutico , Oxadiazoles/uso terapéutico , Piperidinas/uso terapéutico , Quinolinas/uso terapéutico , Receptores Opioides kappa/antagonistas & inhibidores , Aminoquinolinas/síntesis química , Aminoquinolinas/farmacocinética , Animales , Células CACO-2 , Perros , Diseño de Fármacos , Escherichia coli/efectos de los fármacos , Humanos , Células de Riñón Canino Madin Darby , Masculino , Ratones Endogámicos C57BL , Microsomas Hepáticos/metabolismo , Trastornos Migrañosos/tratamiento farmacológico , Estructura Molecular , Antagonistas de Narcóticos/síntesis química , Antagonistas de Narcóticos/farmacocinética , Oxadiazoles/síntesis química , Oxadiazoles/farmacocinética , Piperidinas/síntesis química , Piperidinas/farmacocinética , Quinolinas/síntesis química , Quinolinas/farmacocinética , Ratas Sprague-Dawley , Salmonella typhimurium/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacocinética , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Relación Estructura-Actividad
9.
SLAS Discov ; 24(3): 386-397, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30682260

RESUMEN

The Scripps Research Molecular Screening Center (SRMSC) was founded in 2004 and comprises more than $22 million of specialized automation. As part of the Translational Research Institute (TRI), it comprises early drug discovery labs and medicinal chemistry. Together with Scripps Research at the La Jolla, California, campus, this represents one of the most competitive academic industrial screening centers worldwide. The SRMSC uses automated platforms, one a screening cell and the other a cherry-picking platform. Matched technologies are available throughout Scripps to allow scientists to develop assays and prepare them for automated screening. The library comprises more than 1 million drug-like compounds, including a proprietary collection of >665,000 molecules. Internal chemistry has included ~40,000 unique compounds that are not found elsewhere. These collections are screened against a myriad of disease targets, including cell-based and biochemical assays that are provided by Scripps faculty or from global investigators. Scripps has proven competence in all detection formats, including high-content analysis, fluorescence, bioluminescence resonance energy transfer (BRET), time-resolved fluorescence resonance energy transfer (TR-FRET), fluorescence polarization (FP), luminescence, absorbance, AlphaScreen, and Ca++ signaling. These technologies are applied to NIH-derived collaborations as well as biotech and pharma initiatives. The SRMSC and TRI are recognized for discovering multiple leads, including Ozanimod.


Asunto(s)
Academias e Institutos , Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Investigación Biomédica Traslacional , Automatización , California , Humanos , Programas Informáticos
10.
Nat Chem Biol ; 14(12): 1099-1108, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30420694

RESUMEN

ABHD12 metabolizes bioactive lysophospholipids, including lysophosphatidylserine (lyso-PS). Deleterious mutations in human ABHD12 cause the neurological disease PHARC, and ABHD12-/- mice display PHARC-like phenotypes, including hearing loss, along with elevated brain lyso-PS and features of stimulated innate immune cell function. Here, we develop a selective and in vivo-active inhibitor of ABHD12 termed DO264 and show that this compound elevates lyso-PS in mouse brain and primary human macrophages. Unlike ABHD12-/- mice, adult mice treated with DO264 exhibited minimal perturbations in auditory function. On the other hand, both DO264-treated and ABHD12-/- mice displayed heightened immunological responses to lymphocytic choriomeningitis virus (LCMV) clone 13 infection that manifested as severe lung pathology with elevated proinflammatory chemokines. These results reveal similarities and differences in the phenotypic impact of pharmacological versus genetic blockade of ABHD12 and point to a key role for this enzyme in regulating immunostimulatory lipid pathways in vivo.


Asunto(s)
Encéfalo/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Coriomeningitis Linfocítica/inmunología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Urea/análogos & derivados , Urea/farmacología , Adulto , Animales , Encéfalo/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/química , Femenino , Humanos , Coriomeningitis Linfocítica/tratamiento farmacológico , Coriomeningitis Linfocítica/patología , Lisofosfolípidos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Mutantes , Monoacilglicerol Lipasas/genética , Monoacilglicerol Lipasas/inmunología
11.
Oncotarget ; 8(32): 53563-53580, 2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28881832

RESUMEN

Sphingolipid derivatives play key roles in immune cell migration and function. Synthetic sphingolipid analogues are used as therapeutics to intervene various inflammatory and malignant conditions. We hypothesize that different analogs have different effects on immune cells and therefore can be used as treatment for specific diseases. This study examines the properties of the novel synthetic sphingolipid analog, AD2900, and its effects on immune cell activation and lymphocyte localization in homeostasis. AD2900 is an antagonist for all sphingosine-1-phosphate (S1P) receptors. It demonstrates a significant inhibitory effect on the proliferation of activated human peripheral blood mononuclear cells, which is dependent on cAMP reduction and calcium signal transduction but not on phospholipase C activation. AD2900 causes a significant but reversible downregulation of S1P1 expression on the cell surface. AD2900 administration to C57BL/6J mice leads to the accumulation of T cells in the blood and spleen and in turn reduces T-cell number in the lymph nodes. Moreover, AD2900 treatment shows significant effects on the localization of T-cell subpopulations. These results demonstrate the key roles of S1P in T-cell trafficking in a steady state and suggest a potential clinical application for AD2900. Notably, this sphingolipid analog does not cause a severe lymphopenia. The clinical effect of AD2900 in hemato-oncologic diseases and immune-related diseases needs further investigation.

12.
J Neuroinflammation ; 14(1): 111, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28577576

RESUMEN

BACKGROUND: Sphingosine 1-phosphate (S1P) signals through G protein-coupled receptors to elicit a wide range of cellular responses. In CNS injury and disease, the blood-brain barrier is compromised, causing leakage of S1P from blood into the brain. S1P can also be locally generated through the enzyme sphingosine kinase-1 (Sphk1). Our previous studies demonstrated that S1P activates inflammation in murine astrocytes. The S1P1 receptor subtype has been most associated with CNS disease, particularly multiple sclerosis. S1P3 is most highly expressed and upregulated on astrocytes, however, thus we explored the involvement of this receptor in inflammatory astrocytic responses. METHODS: Astrocytes isolated from wild-type (WT) or S1P3 knockout (KO) mice were treated with S1P3 selective drugs or transfected with short interfering RNA to determine which receptor subtypes mediate S1P-stimulated inflammatory responses. Interleukin-6 (IL-6), and vascular endothelial growth factor A (VEGFa) messenger RNA (mRNA) and cyclooxygenase-2 (COX-2) mRNA and protein were assessed by q-PCR and Western blotting. Activation of RhoA was measured using SRE.L luciferase and RhoA implicated in S1P signaling by knockdown of Gα12/13 proteins or by inhibiting RhoA activation with C3 exoenzyme. Inflammation was simulated by in vitro scratch injury of cultured astrocytes. RESULTS: S1P3 was highly expressed in astrocytes and further upregulated in response to simulated inflammation. Studies using S1P3 knockdown and S1P3 KO astrocytes demonstrated that S1P3 mediates activation of RhoA and induction of COX-2, IL-6, and VEGFa mRNA, with some contribution from S1P2. S1P induces expression of all of these genes through coupling to the Gα12/13 proteins which activate RhoA. Studies using S1P3 selective agonists/antagonists as well as Fingolimod (FTY720) confirmed that stimulation of S1P3 induces COX-2 expression in astrocytes. Simulated inflammation increased expression of Sphk1 and consequently activated S1P3, demonstrating an autocrine pathway through which S1P is formed and released from astrocytes to regulate COX-2 expression. CONCLUSIONS: S1P3, through its ability to activate RhoA and its upregulation in astrocytes, plays a unique role in inducing inflammatory responses and should be considered as a potentially important therapeutic target for CNS disease progression.


Asunto(s)
Astrocitos/metabolismo , Expresión Génica/fisiología , Receptores de Lisoesfingolípidos/metabolismo , Transducción de Señal/fisiología , Proteína de Unión al GTP rhoA/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Células Cultivadas , Ciclooxigenasa 2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Expresión Génica/efectos de los fármacos , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Lisoesfingolípidos/genética , Renilla , Transducción de Señal/efectos de los fármacos , Transfección , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteína de Unión al GTP rhoA/genética
13.
Cephalalgia ; 37(8): 780-794, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28376659

RESUMEN

Background Stress is the most commonly reported migraine trigger. Dynorphin, an endogenous opioid peptide acting preferentially at kappa opioid receptors (KORs), is a key mediator of stress responses. The aim of this study was to use an injury-free rat model of functional cephalic pain with features of migraine and medication overuse headache (MOH) to test the possible preventive benefit of KOR blockade on stress-induced cephalic pain. Methods Following sumatriptan priming to model MOH, rats were hyper-responsive to environmental stress, demonstrating delayed cephalic and extracephalic allodynia and increased levels of CGRP in the jugular blood, consistent with commonly observed clinical outcomes during migraine. Nor-binaltorphimine (nor-BNI), a long-acting KOR antagonist or CYM51317, a novel short-acting KOR antagonist, were given systemically either during sumatriptan priming or immediately before environmental stress challenge. The effects of KOR blockade in the amygdala on stress-induced allodynia was determined by administration of nor-BNI into the right or left central nucleus of the amygdala (CeA). Results KOR blockade prevented both stress-induced allodynia and increased plasma CGRP. Stress increased dynorphin content and phosphorylated KOR in both the left and right CeA in sumatriptan-primed rats. However, KOR blockade only in the right CeA prevented stress-induced cephalic allodynia as well as extracephalic allodynia, measured in either the right or left hindpaws. U69,593, a KOR agonist, given into the right, but not the left, CeA, produced allodynia selectively in sumatriptan-primed rats. Both stress and U69,593-induced allodynia were prevented by right CeA U0126, a mitogen-activated protein kinase inhibitor, presumably acting downstream of KOR. Conclusions Our data reveal a novel lateralized KOR circuit that mediated stress-induced cutaneous allodynia and increased plasma CGRP in an injury-free model of functional cephalic pain with features of migraine and medication overuse headache. Selective, small molecule, orally available, and reversible KOR antagonists are currently in development and may represent a novel class of preventive therapeutics for migraine.


Asunto(s)
Trastornos Migrañosos , Antagonistas de Narcóticos/farmacología , Receptores Opioides kappa/antagonistas & inhibidores , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Naltrexona/análogos & derivados , Naltrexona/farmacología , Ratas , Ratas Sprague-Dawley
14.
J Clin Pharmacol ; 57(8): 988-996, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28398597

RESUMEN

The sphingosine-1-phosphate 1 receptor (S1P1R ) is expressed by lymphocytes, dendritic cells, and vascular endothelial cells and plays a role in the regulation of chronic inflammation and lymphocyte egress from peripheral lymphoid organs. Ozanimod is an oral selective modulator of S1P1R and S1P5R receptors in clinical development for the treatment of chronic immune-mediated, inflammatory diseases. This first-in-human study characterized the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of ozanimod in 88 healthy volunteers using a range of single and multiple doses (7 and 28 days) and a dose-escalation regimen. Ozanimod was generally well tolerated up to a maximum single dose of 3 mg and multiple doses of 2 mg/d, with no severe adverse events (AEs) and no dose-limiting toxicities. The most common ozanimod-related AEs included headache, somnolence, dizziness, nausea, and fatigue. Ozanimod exhibited linear PK, high steady-state volume of distribution (73-101 L/kg), moderate oral clearance (204-227 L/h), and an elimination half-life of approximately 17 to 21 hours. Ozanimod produced a robust dose-dependent reduction in total peripheral lymphocytes, with a median decrease of 65% to 68% observed after 28 days of dosing at 1 and 1.5 mg/d, respectively. Ozanimod selectivity affected lymphocyte subtypes, causing marked decreases in cells expressing CCR7 and variable decreases in subsets lacking CCR7. A dose-dependent negative chronotropic effect was observed following the first dose, with the dose-escalation regimen attenuating the first-dose negative chronotropic effect. Ozanimod safety, PK, and PD properties support the once-daily regimens under clinical investigation.


Asunto(s)
Indanos , Oxadiazoles , Adulto , Método Doble Ciego , Ayuno/metabolismo , Femenino , Voluntarios Sanos , Humanos , Indanos/efectos adversos , Indanos/sangre , Indanos/farmacocinética , Indanos/farmacología , Recuento de Linfocitos , Linfocitos/efectos de los fármacos , Masculino , Persona de Mediana Edad , Oxadiazoles/efectos adversos , Oxadiazoles/sangre , Oxadiazoles/farmacocinética , Oxadiazoles/farmacología , Receptores de Lisoesfingolípidos/metabolismo , Adulto Joven
15.
Proc Natl Acad Sci U S A ; 114(14): 3708-3713, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28325871

RESUMEN

Blockade of IFN-α but not IFN-ß signaling using either an antibody or a selective S1PR1 agonist, CYM-5442, prevented type 1 diabetes (T1D) in the mouse Rip-LCMV T1D model. First, treatment with antibody or CYM-5442 limited the migration of autoimmune "antiself" T cells to the external boundaries around the islets and prevented their entry into the islets so they could not be positioned to engage, kill, and thus remove insulin-producing ß cells. Second, CYM-5442 induced an exhaustion signature in antiself T cells by up-regulating the negative immune regulator receptor genes Pdcd1, Lag3, Ctla4, Tigit, and Btla, thereby limiting their killing ability. By such means, insulin production was preserved and glucose regulation maintained, and a mechanism for S1PR1 immunomodulation described.


Asunto(s)
Diabetes Mellitus Tipo 1/prevención & control , Indanos/administración & dosificación , Interferón-alfa/metabolismo , Oxadiazoles/administración & dosificación , Estado Prediabético/tratamiento farmacológico , Receptores de Lisoesfingolípidos/agonistas , Linfocitos T/efectos de los fármacos , Animales , Diabetes Mellitus Tipo 1/inmunología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Indanos/farmacología , Insulina/metabolismo , Células Secretoras de Insulina/inmunología , Islotes Pancreáticos/inmunología , Ratones , Oxadiazoles/farmacología , Estado Prediabético/inmunología , Receptores Inmunológicos/metabolismo , Transducción de Señal/efectos de los fármacos , Receptores de Esfingosina-1-Fosfato , Linfocitos T/inmunología
16.
J Mol Cell Cardiol ; 103: 1-10, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28017639

RESUMEN

Sphingosine-1-phosphate (S1P), a bioactive lysophospholipid, is generated and released at sites of tissue injury in the heart and can act on S1P1, S1P2, and S1P3 receptor subtypes to affect cardiovascular responses. We established that S1P causes little phosphoinositide hydrolysis and does not induce hypertrophy indicating that it does not cause receptor coupling to Gq. We previously demonstrated that S1P confers cardioprotection against ischemia/reperfusion by activating RhoA and its downstream effector PKD. The S1P receptor subtypes and G proteins that regulate RhoA activation and downstream responses in the heart have not been determined. Using siRNA or pertussis toxin to inhibit different G proteins in NRVMs we established that S1P regulates RhoA activation through Gα13 but not Gα12, Gαq, or Gαi. Knockdown of the three major S1P receptors using siRNA demonstrated a requirement for S1P3 in RhoA activation and subsequent phosphorylation of PKD, and this was confirmed in studies using isolated hearts from S1P3 knockout (KO) mice. S1P treatment reduced infarct size induced by ischemia/reperfusion in Langendorff perfused wild-type (WT) hearts and this protection was abolished in the S1P3 KO mouse heart. CYM-51736, an S1P3-specific agonist, also decreased infarct size after ischemia/reperfusion to a degree similar to that achieved by S1P. The finding that S1P3 receptor- and Gα13-mediated RhoA activation is responsible for protection against ischemia/reperfusion suggests that selective targeting of S1P3 receptors could provide therapeutic benefits in ischemic heart disease.


Asunto(s)
Miocitos Cardíacos/metabolismo , Proproteína Convertasas/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Serina Endopeptidasas/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Cardiomegalia/etiología , Cardiomegalia/metabolismo , Cardiomegalia/patología , Lisofosfolípidos/metabolismo , Masculino , Ratones , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Unión Proteica , Ratas , Transducción de Señal , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Canales Catiónicos TRPP/metabolismo
17.
Bioorg Med Chem Lett ; 27(1): 1-5, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27894870

RESUMEN

S1P receptors (S1PR1-5) are a group of GPCRs activated by a high affinity binding with S1P that have important roles in the regulation of the immune system. A potent S1PR agonist FTY720 is an immunomodulator used to treat multiple sclerosis and several 'second generation' drugs are under clinical development. Subtype-selective agonists have been reported for each S1PR isotype, some of which are used as pharmacological tools for functional studies. Here we report the discovery and initial characterization of compound 5c, a benzo[b]thiophene amino carboxylate which exhibits potent and selective agonist activity for S1PR4. Compound 5c has an EC50=200nM as an agonist in GTPγ35S binding assay for S1PR4 and exhibits no activity against S1PR1,2,3,5. We confirmed its potent activity and decent S1PR subtype selectivity using biochemical and cellular assays.


Asunto(s)
Receptores de Lisoesfingolípidos/agonistas , Tiofenos/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Relación Estructura-Actividad , Tiofenos/química
18.
J Infect Dis ; 215(2): 278-286, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27815382

RESUMEN

Recent data have demonstrated the potential of sphingosine 1-phosphate (S1P) receptor (S1PR) agonism in the treatment of infectious diseases. A previous study used a murine model of Bordetella pertussis infection to demonstrate that treatment with the S1PR agonist AAL-R reduces pulmonary inflammation during infection. In the current study, we showed that this effect is mediated via the S1PR1 on LysM+ (myeloid) cells. Signaling via this receptor results in reduced lung inflammation and cellular recruitment as well as reduced morbidity and mortality in a neonatal mouse model of disease. Despite the fact that S1PRs are pertussis toxin-sensitive G protein-coupled receptors, the effects of AAL-R were pertussis toxin insensitive in our model. Furthermore, our data demonstrate that S1PR agonist administration may be effective at therapeutic time points. These results indicate a role for S1P signaling in B. pertussis-mediated pathology and highlight the possibility of host-targeted therapy for pertussis.


Asunto(s)
Antiinflamatorios/administración & dosificación , Inflamación/tratamiento farmacológico , Toxina del Pertussis/antagonistas & inhibidores , Receptores de Lisoesfingolípidos/agonistas , Esfingosina/administración & dosificación , Tos Ferina/tratamiento farmacológico , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Inflamación/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/metabolismo , Toxina del Pertussis/metabolismo , Esfingosina/análogos & derivados , Receptores de Esfingosina-1-Fosfato , Tos Ferina/patología
19.
J Am Chem Soc ; 138(40): 13335-13343, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27689866

RESUMEN

Methylation is a fundamental mechanism used in Nature to modify the structure and function of biomolecules, including proteins, DNA, RNA, and metabolites. Methyl groups are predominantly installed into biomolecules by a large and diverse class of S-adenosyl methionine (SAM)-dependent methyltransferases (MTs), of which there are ∼200 known or putative members in the human proteome. Deregulated MT activity contributes to numerous diseases, including cancer, and several MT inhibitors are in clinical development. Nonetheless, a large fraction of the human MT family remains poorly characterized, underscoring the need for new technologies to characterize MTs and their inhibitors in native biological systems. Here, we describe a suite of S-adenosyl homocysteine (SAH) photoreactive probes and their application in chemical proteomic experiments to profile and enrich a large number of MTs (>50) from human cancer cell lysates with remarkable specificity over other classes of proteins. We further demonstrate that the SAH probes can enrich MT-associated proteins and be used to screen for and assess the selectivity of MT inhibitors, leading to the discovery of a covalent inhibitor of nicotinamide N-methyltransferase (NNMT), an enzyme implicated in cancer and metabolic disorders. The chemical proteomics probes and methods for their utilization reported herein should prove of value for the functional characterization of MTs, MT complexes, and MT inhibitors in mammalian biology and disease.


Asunto(s)
Metiltransferasas/metabolismo , Proteómica , Línea Celular Tumoral , Activación Enzimática , Humanos , Sondas Moleculares/metabolismo , S-Adenosilhomocisteína/metabolismo , Rayos Ultravioleta
20.
J Biol Chem ; 291(50): 25965-25982, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-27702998

RESUMEN

Neutrophils constitute the first line of cellular defense in response to bacterial and fungal infections and rely on granular proteins to kill microorganisms, but uncontrolled secretion of neutrophil cargos is injurious to the host and should be closely regulated. Thus, increased plasma levels of neutrophil secretory proteins, including myeloperoxidase and elastase, are associated with tissue damage and are hallmarks of systemic inflammation. Here, we describe a novel high-throughput screening approach to identify small molecule inhibitors of the interaction between the small GTPase Rab27a and its effector JFC1, two central regulators of neutrophil exocytosis. Using this assay, we have identified small molecule inhibitors of Rab27a-JFC1 binding that were also active in cell-based neutrophil-specific exocytosis assays, demonstrating the druggability of Rab GTPases and their effectors. These compounds, named Nexinhibs (neutrophil exocytosis inhibitors), inhibit exocytosis of azurophilic granules in human neutrophils without affecting other important innate immune responses, including phagocytosis and neutrophil extracellular trap production. Furthermore, the compounds are reversible and potent inhibitors of the extracellular production of superoxide anion by preventing the up-regulation of the granule membrane-associated subunit of the NADPH oxidase at the plasma membrane. Nexinhibs also inhibit the up-regulation of activation signature molecules, including the adhesion molecules CD11b and CD66b. Importantly, by using a mouse model of endotoxin-induced systemic inflammation, we show that these inhibitors have significant activity in vivo manifested by decreased plasma levels of neutrophil secretory proteins and significantly decreased tissue infiltration by inflammatory neutrophils. Altogether, our data present the first neutrophil exocytosis-specific inhibitor with in vivo anti-inflammatory activity, supporting its potential use as an inhibitor of systemic inflammation.


Asunto(s)
Membrana Celular/metabolismo , Exocitosis/efectos de los fármacos , Neutrófilos/metabolismo , Proteínas de Unión al GTP rab/antagonistas & inhibidores , Animales , Antígenos CD/metabolismo , Antígeno CD11b/metabolismo , Moléculas de Adhesión Celular/metabolismo , Femenino , Proteínas Ligadas a GPI/metabolismo , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Ratones , NADPH Oxidasas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas rab27 de Unión a GTP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA