Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Res Sq ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38978604

RESUMEN

Type 2 Diabetes (T2D) is a condition that is often associated with obesity and defined by reduced sensitivity of PI3K signaling to insulin (insulin resistance), hyperinsulinemia and hyperglycemia. Molecular causes and early signaling events underlying insulin resistance are not well understood. Insulin activation of PI3K signaling causes mTOR dependent induction of PTEN translation, a negative regulator of PI3K signaling. We speculated that insulin resistance is due to insulin dependent induction of PTEN protein that prevent further increases in PI3K signaling. Here we show that in a diet induced model of obesity and insulin resistance, PTEN levels are increased in fat, muscle and liver tissues. Onset of hyperinsulinemia and PTEN induction in tissue is followed by hyperglycemia, hepatic steatosis and severe glucose intolerance. Treatment with a PTEN phosphatase inhibitor prevents and reverses these phenotypes, whereas an mTORC1 kinase inhibitor reverses all but the hepatic steatosis. These data suggest that induction of PTEN by increasing levels of insulin elevates feedback inhibition of the pathway to a point where downstream PI3K signaling is reduced and hyperglycemia ensues. PTEN induction is thus necessary for insulin resistance and the type 2 diabetes phenotype and a potential therapeutic target.

2.
Nat Commun ; 15(1): 6076, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39025835

RESUMEN

Current KRASG12C (OFF) inhibitors that target inactive GDP-bound KRASG12C cause responses in less than half of patients and these responses are not durable. A class of RASG12C (ON) inhibitors that targets active GTP-bound KRASG12C blocks ERK signaling more potently than the inactive-state inhibitors. Sensitivity to either class of agents is strongly correlated with inhibition of mTORC1 activity. We have previously shown that PI3K/mTOR and ERK-signaling pathways converge on key cellular processes and that inhibition of both pathways is required for inhibition of these processes and for significant antitumor activity. We find here that the combination of a KRASG12C inhibitor with a selective mTORC1 kinase inhibitor causes synergistic inhibition of Cyclin D1 expression and cap-dependent translation. Moreover, BIM upregulation by KRASG12C inhibition and inhibition of MCL-1 expression by the mTORC1 inhibitor are both required to induce significant cell death. In vivo, this combination causes deep, durable tumor regressions and is well tolerated. This study suggests that the ERK and PI3K/mTOR pathways each mitigate the effects of inhibition of the other and that combinatorial inhibition is a potential strategy for treating KRASG12C-dependent lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Sinergismo Farmacológico , Neoplasias Pulmonares , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas Proto-Oncogénicas p21(ras) , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Animales , Línea Celular Tumoral , Ratones , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Transducción de Señal/efectos de los fármacos , Ciclina D1/metabolismo , Ciclina D1/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Femenino , Proteína 11 Similar a Bcl2/metabolismo , Proteína 11 Similar a Bcl2/genética
3.
Clin Cancer Res ; 30(17): 3812-3823, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38922339

RESUMEN

PURPOSE: Even though BRAF fusions are increasingly detected in standard multigene next-generation sequencing panels, few reports have explored their structure and impact on clinical course. EXPERIMENTAL DESIGN: We collected data from patients with BRAF fusion-positive cancers identified through a genotyping protocol of 97,024 samples. Fusions were characterized and reviewed for oncogenic potential (in-frame status, non-BRAF partner gene, and intact BRAF kinase domain). RESULTS: We found 241 BRAF fusion-positive tumors from 212 patients with 82 unique 5' fusion partners spanning 52 histologies. Thirty-nine fusion partners were not previously reported, and 61 were identified once. BRAF fusion incidence was enriched in pilocytic astrocytomas, gangliogliomas, low-grade neuroepithelial tumors, and acinar cell carcinoma of the pancreas. Twenty-four patients spanning multiple histologies were treated with MAPK-directed therapies, of which 20 were evaluable for RECIST. Best response was partial response (N = 2), stable disease (N = 11), and progressive disease (N = 7). The median time on therapy was 1 month with MEK plus BRAF inhibitors [(N = 11), range 0-18 months] and 8 months for MEK inhibitors [(N = 14), range 1-26 months]. Nine patients remained on treatment for longer than 6 months [pilocytic astrocytomas (N = 6), Erdheim-Chester disease (N = 1), extraventricular neurocytoma (N = 1), and melanoma (N = 1)]. Fifteen patients had acquired BRAF fusions. CONCLUSIONS: BRAF fusions are found across histologies and represent an emerging actionable target. BRAF fusions have a diverse set of fusion partners. Durable responses to MAPK therapies were seen, particularly in pilocytic astrocytomas. Acquired BRAF fusions were identified after targeted therapy, underscoring the importance of postprogression biopsies to optimize treatment at relapse in these patients.


Asunto(s)
Proteínas de Fusión Oncogénica , Proteínas Proto-Oncogénicas B-raf , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Adulto , Masculino , Persona de Mediana Edad , Femenino , Anciano , Proteínas de Fusión Oncogénica/genética , Adulto Joven , Adolescente , Terapia Molecular Dirigida , Niño , Neoplasias/genética , Neoplasias/patología , Biomarcadores de Tumor/genética , Genómica/métodos , Preescolar , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Secuenciación de Nucleótidos de Alto Rendimiento
4.
Cancer Immunol Res ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38885362

RESUMEN

MEK inhibitors (MEKis) have shown limited success as a treatment for MAPK/ERK pathway-dependent cancers due to various resistance mechanisms tumor cells can employ. CH5126766 (CKI27) is an inhibitor that binds to MEK and prevents release of RAF, reducing the relief of negative feedback commonly observed with other MEKis. We observed that CKI27 increased MHC expression on tumor cells and improved T cell-mediated killing. Yet, CKI27 also decreased T-cell proliferation, activation, and cytolytic activity by inhibiting the MAPK/ERK pathway that is activated downstream of T cell-receptor signaling. Therefore, we aimed to balance the positive and negative immunomodulatory effects of MEKis for optimal combination with immunotherapy. Intermittent administration of CKI27 allowed T cells to partially recover and co-stimulation via GITR and OX-40 agonist antibodies completely alleviated inhibition of function. In Kras mutant lung and colon tumor mouse models, intermittent CKI27 and anti-GITR significantly decreased tumor growth and prolonged survival when further combined with CTLA-4 immune checkpoint blockade. Moreover, this triple combination increased CD8+ and CD4+ T-cell proliferation, activation, and effector/memory subsets in the tumor draining lymph nodes and tumors and led to intratumoral regulatory T cell (Treg) destabilization. These data, collectively, will allow for more informed decisions when optimizing combination regimens by overcoming resistance, reducing toxicity, and generating long-term immune responses.

5.
Cancer Discov ; 14(9): 1599-1611, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-38691346

RESUMEN

RAF inhibitors have transformed treatment for patients with BRAFV600-mutant cancers, but clinical benefit is limited by adaptive induction of ERK signaling, genetic alterations that induce BRAFV600 dimerization, and poor brain penetration. Next-generation pan-RAF dimer inhibitors are limited by a narrow therapeutic index. PF-07799933 (ARRY-440) is a brain-penetrant, selective, pan-mutant BRAF inhibitor. PF-07799933 inhibited signaling in vitro, disrupted endogenous mutant-BRAF:wild-type-CRAF dimers, and spared wild-type ERK signaling. PF-07799933 ± binimetinib inhibited growth of mouse xenograft tumors driven by mutant BRAF that functions as dimers and by BRAFV600E with acquired resistance to current RAF inhibitors. We treated patients with treatment-refractory BRAF-mutant solid tumors in a first-in-human clinical trial (NCT05355701) that utilized a novel, flexible, pharmacokinetics-informed dose escalation design that allowed rapid achievement of PF-07799933 efficacious concentrations. PF-07799933 ± binimetinib was well-tolerated and resulted in multiple confirmed responses, systemically and in the brain, in patients with BRAF-mutant cancer who were refractory to approved RAF inhibitors. Significance: PF-07799933 treatment was associated with antitumor activity against BRAFV600- and non-V600-mutant cancers preclinically and in treatment-refractory patients, and PF-07799933 could be safely combined with a MEK inhibitor. The novel, rapid pharmacokinetics (PK)-informed dose escalation design provides a new paradigm for accelerating the testing of next-generation targeted therapies early in clinical development.


Asunto(s)
Resistencia a Antineoplásicos , Mutación , Neoplasias , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas B-raf , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Animales , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Ratones , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Persona de Mediana Edad , Bencimidazoles/farmacocinética , Bencimidazoles/uso terapéutico , Bencimidazoles/administración & dosificación , Bencimidazoles/farmacología , Anciano , Adulto , Línea Celular Tumoral
6.
bioRxiv ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38766126

RESUMEN

The majority of human breast cancers are dependent on hormone-stimulated estrogen receptor alpha (ER) and are sensitive to its inhibition. Treatment resistance arises in most advanced cancers due to genetic alterations that promote ligand independent activation of ER itself or ER target genes. Whereas re-targeting of the ER ligand binding domain (LBD) with newer ER antagonists can work in some cases, these drugs are largely ineffective in many genetic backgrounds including ER fusions that lose the LBD or in cancers that hyperactivate ER targets. By identifying the mechanism of ER translation, we herein present an alternative strategy to target ER and difficult to treat ER variants. We find that ER translation is cap-independent and mTOR inhibitor insensitive, but dependent on 5' UTR elements and sensitive to pharmacologic inhibition of the translation initiation factor eIF4A, an mRNA helicase. EIF4A inhibition rapidly reduces expression of ER and short-lived targets of ER such as cyclin D1 and other components of the cyclin D-CDK complex in breast cancer cells. These effects translate into suppression of growth of a variety of ligand-independent breast cancer models including those driven by ER fusion proteins that lack the ligand binding site. The efficacy of eIF4A inhibition is enhanced when it is combined with fulvestrant-an ER degrader. Concomitant inhibition of ER synthesis and induction of its degradation causes synergistic and durable inhibition of ER expression and tumor growth. The clinical importance of these findings is confirmed by results of an early clinical trial (NCT04092673) of the selective eIF4A inhibitor zotatifin in patients with estrogen receptor positive metastatic breast cancer. Multiple clinical responses have been observed on combination therapy including durable regressions. These data suggest that eIF4A inhibition could be a useful new strategy for treating advanced ER+ breast cancer.

7.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38659913

RESUMEN

BRAFV600E mutation occurs in 46% of melanomas and drives high levels of ERK activity and ERK-dependent proliferation. However, BRAFV600E is insufficient to drive melanoma in GEMM models, and 82% of human benign nevi harbor BRAFV600E mutations. We show here that BRAFV600E inhibits mesenchymal migration by causing feedback inhibition of RAC1 activity. ERK pathway inhibition induces RAC1 activation and restores migration and invasion. In cells with BRAFV600E, mutant RAC1, overexpression of PREX1, PREX2, or PTEN inactivation restore RAC1 activity and cell motility. Together, these lesions occur in 48% of BRAFV600E melanomas. Thus, although BRAFV600E activation of ERK deregulates cell proliferation, it prevents full malignant transformation by causing feedback inhibition of cell migration. Secondary mutations are, therefore, required for tumorigenesis. One mechanism underlying tumor evolution may be the selection of lesions that rescue the deleterious effects of oncogenic drivers.

8.
Nat Rev Clin Oncol ; 21(3): 224-247, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278874

RESUMEN

In June 2022, the FDA granted Accelerated Approval to the BRAF inhibitor dabrafenib in combination with the MEK inhibitor trametinib for the treatment of adult and paediatric patients (≥6 years of age) with unresectable or metastatic BRAFV600E-mutant solid tumours, except for BRAFV600E-mutant colorectal cancers. The histology-agnostic approval of dabrafenib plus trametinib marks the culmination of two decades of research into the landscape of BRAF mutations in human cancers, the biochemical mechanisms underlying BRAF-mediated tumorigenesis, and the clinical development of selective RAF and MEK inhibitors. Although the majority of patients with BRAFV600E-mutant tumours derive clinical benefit from BRAF inhibitor-based combinations, resistance to treatment develops in most. In this Review, we describe the biochemical basis for oncogenic BRAF-induced activation of MAPK signalling and pan-cancer and lineage-specific mechanisms of intrinsic, adaptive and acquired resistance to BRAF inhibitors. We also discuss novel RAF inhibitors and drug combinations designed to delay the emergence of treatment resistance and/or expand the population of patients with BRAF-mutant cancers who benefit from molecularly targeted therapies.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas B-raf , Adulto , Humanos , Niño , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/inducido químicamente , Imidazoles/uso terapéutico , Oximas/efectos adversos , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
9.
Cancer Discov ; 13(1): 41-55, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36355783

RESUMEN

With the combination of KRASG12C and EGFR inhibitors, KRAS is becoming a druggable target in colorectal cancer. However, secondary resistance limits its efficacy. Using cell lines, patient-derived xenografts, and patient samples, we detected a heterogeneous pattern of putative resistance alterations expected primarily to prevent inhibition of ERK signaling by drugs at progression. Serial analysis of patient blood samples on treatment demonstrates that most of these alterations are detected at a low frequency except for KRASG12C amplification, a recurrent resistance mechanism that rises in step with clinical progression. Upon drug withdrawal, resistant cells with KRASG12C amplification undergo oncogene-induced senescence, and progressing patients experience a rapid fall in levels of this alteration in circulating DNA. In this new state, drug resumption is ineffective as mTOR signaling is elevated. However, our work exposes a potential therapeutic vulnerability, whereby therapies that target the senescence response may overcome acquired resistance. SIGNIFICANCE: Clinical resistance to KRASG12C-EGFR inhibition primarily prevents suppression of ERK signaling. Most resistance mechanisms are subclonal, whereas KRASG12C amplification rises over time to drive a higher portion of resistance. This recurrent resistance mechanism leads to oncogene-induced senescence upon drug withdrawal and creates a potential vulnerability to senolytic approaches. This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Neoplasias Colorrectales , Resistencia a Antineoplásicos , Animales , Humanos , Resistencia a Antineoplásicos/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Transducción de Señal , Modelos Animales de Enfermedad , Receptores ErbB , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Mutación
10.
N Engl J Med ; 387(2): 184-186, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35830646
11.
Cancer Discov ; 12(10): 2434-2453, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35904492

RESUMEN

Recently, screens for mediators of resistance to FLT3 and ABL kinase inhibitors in leukemia resulted in the discovery of LZTR1 as an adapter of a Cullin-3 RING E3 ubiquitin ligase complex responsible for the degradation of RAS GTPases. In parallel, dysregulated LZTR1 expression via aberrant splicing and mutations was identified in clonal hematopoietic conditions. Here we identify that loss of LZTR1, or leukemia-associated mutants in the LZTR1 substrate and RAS GTPase RIT1 that escape degradation, drives hematopoietic stem cell (HSC) expansion and leukemia in vivo. Although RIT1 stabilization was sufficient to drive hematopoietic transformation, transformation mediated by LZTR1 loss required MRAS. Proteolysis targeting chimeras (PROTAC) against RAS or reduction of GTP-loaded RAS overcomes LZTR1 loss-mediated resistance to FLT3 inhibitors. These data reveal proteolysis of noncanonical RAS proteins as novel regulators of HSC self-renewal, define the function of RIT1 and LZTR1 mutations in leukemia, and identify means to overcome drug resistance due to LZTR1 downregulation. SIGNIFICANCE: Here we identify that impairing proteolysis of the noncanonical RAS GTPases RIT1 and MRAS via LZTR1 downregulation or leukemia-associated mutations stabilizing RIT1 enhances MAP kinase activation and drives leukemogenesis. Reducing the abundance of GTP-bound KRAS and NRAS overcomes the resistance to FLT3 kinase inhibitors associated with LZTR1 downregulation in leukemia. This article is highlighted in the In This Issue feature, p. 2221.


Asunto(s)
Leucemia , Proteínas ras , Proteínas Cullin/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Leucemia/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteolisis , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Factores de Transcripción/genética , Proteínas ras/genética
12.
Mol Cell ; 82(13): 2443-2457.e7, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35613620

RESUMEN

RAF protein kinases are effectors of the GTP-bound form of small guanosine triphosphatase RAS and function by phosphorylating MEK. We showed here that the expression of ARAF activated RAS in a kinase-independent manner. Binding of ARAF to RAS displaced the GTPase-activating protein NF1 and antagonized NF1-mediated inhibition of RAS. This reduced ERK-dependent inhibition of RAS and increased RAS-GTP. By this mechanism, ARAF regulated the duration and consequences of RTK-induced RAS activation and supported the RAS output of RTK-dependent tumor cells. In human lung cancers with EGFR mutation, amplification of ARAF was associated with acquired resistance to EGFR inhibitors, which was overcome by combining EGFR inhibitors with an inhibitor of the protein tyrosine phosphatase SHP2 to enhance inhibition of nucleotide exchange and RAS activation.


Asunto(s)
Neurofibromina 1 , Proteínas Proto-Oncogénicas A-raf , Proteínas Activadoras de ras GTPasa , Receptores ErbB/genética , Receptores ErbB/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Neurofibromina 1/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas A-raf/metabolismo , Transducción de Señal , Proteínas Activadoras de ras GTPasa/metabolismo
13.
Nature ; 604(7905): 354-361, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35355015

RESUMEN

Oncogenic alterations to DNA are not transforming in all cellular contexts1,2. This may be due to pre-existing transcriptional programmes in the cell of origin. Here we define anatomic position as a major determinant of why cells respond to specific oncogenes. Cutaneous melanoma arises throughout the body, whereas the acral subtype arises on the palms of the hands, soles of the feet or under the nails3. We sequenced the DNA of cutaneous and acral melanomas from a large cohort of human patients and found a specific enrichment for BRAF mutations in cutaneous melanoma and enrichment for CRKL amplifications in acral melanoma. We modelled these changes in transgenic zebrafish models and found that CRKL-driven tumours formed predominantly in the fins of the fish. The fins are the evolutionary precursors to tetrapod limbs, indicating that melanocytes in these acral locations may be uniquely susceptible to CRKL. RNA profiling of these fin and limb melanocytes, when compared with body melanocytes, revealed a positional identity gene programme typified by posterior HOX13 genes. This positional gene programme synergized with CRKL to amplify insulin-like growth factor (IGF) signalling and drive tumours at acral sites. Abrogation of this CRKL-driven programme eliminated the anatomic specificity of acral melanoma. These data suggest that the anatomic position of the cell of origin endows it with a unique transcriptional state that makes it susceptible to only certain oncogenic insults.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Animales , Animales Modificados Genéticamente , Carcinogénesis/genética , Pie , Mano , Humanos , Melanoma/patología , Uñas , Oncogenes/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Transcripción Genética , Pez Cebra/genética , Melanoma Cutáneo Maligno
14.
JTO Clin Res Rep ; 3(1): 100256, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34984405

RESUMEN

INTRODUCTION: Somatic KRAS mutations occur in 25% of patients with NSCLC. Treatment with MEK inhibitor monotherapy has not been successful in clinical trials to date. Compensatory activation of FGFR1 was identified as a mechanism of trametinib resistance in KRAS-mutant NSCLC, and combination therapy with trametinib and ponatinib was synergistic in in vitro and in vivo models. This study sought to evaluate this drug combination in patients with KRAS-mutant NSCLC. METHODS: A phase 1 dose escalation study of trametinib and ponatinib was conducted in patients with advanced NSCLC with KRAS mutations. A standard 3-plus-3 dose escalation was done. Patients were treated with the study therapy until intolerable toxicity or disease progression. RESULTS: A total of 12 patients with KRAS-mutant NSCLC were treated (seven at trametinib 2 mg and ponatinib 15 mg, five at trametinib 2 mg and ponatinib 30 mg). Common toxicities observed were rash, diarrhea, and fever. Serious adverse events potentially related to therapy were reported in five patients, including one death in the study and four cardiovascular events. Serious events were observed at both dose levels. Of note, 75% (9 of 12) were assessable for radiographic response and no confirmed partial responses were observed. The median time on study was 43 days. CONCLUSIONS: In this phase 1 study, in patients with KRAS-mutant advanced NSCLC, combined treatment with trametinib and ponatinib was associated with cardiovascular and bleeding toxicities. Exploring the combination of MEK and FGFR1 inhibition in future studies is potentially warranted but alternative agents should be considered to improve safety and tolerability.

15.
Cancer Discov ; 12(2): 356-371, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34544752

RESUMEN

Cyclin-dependent kinases 4 and 6 (CDK4/6) represent a major therapeutic vulnerability for breast cancer. The kinases are clinically targeted via ATP competitive inhibitors (CDK4/6i); however, drug resistance commonly emerges over time. To understand CDK4/6i resistance, we surveyed over 1,300 breast cancers and identified several genetic alterations (e.g., FAT1, PTEN, or ARID1A loss) converging on upregulation of CDK6. Mechanistically, we demonstrate CDK6 causes resistance by inducing and binding CDK inhibitor INK4 proteins (e.g., p18INK4C). In vitro binding and kinase assays together with physical modeling reveal that the p18INK4C-cyclin D-CDK6 complex occludes CDK4/6i binding while only weakly suppressing ATP binding. Suppression of INK4 expression or its binding to CDK6 restores CDK4/6i sensitivity. To overcome this constraint, we developed bifunctional degraders conjugating palbociclib with E3 ligands. Two resulting lead compounds potently degraded CDK4/6, leading to substantial antitumor effects in vivo, demonstrating the promising therapeutic potential for retargeting CDK4/6 despite CDK4/6i resistance. SIGNIFICANCE: CDK4/6 kinase activation represents a common mechanism by which oncogenic signaling induces proliferation and is potentially targetable by ATP competitive inhibitors. We identify a CDK6-INK4 complex that is resilient to current-generation inhibitors and develop a new strategy for more effective inhibition of CDK4/6 kinases.This article is highlighted in the In This Issue feature, p. 275.


Asunto(s)
Antineoplásicos/química , Neoplasias de la Mama/tratamiento farmacológico , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/química , Resistencia a Antineoplásicos , Piperazinas/química , Inhibidores de Proteínas Quinasas/química , Piridinas/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/patología , Línea Celular Tumoral/efectos de los fármacos , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/administración & dosificación , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/uso terapéutico , Femenino , Humanos , Piperazinas/farmacología , Piperazinas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Proteínas Supresoras de Tumor/metabolismo
16.
Nat Rev Mater ; 6(4): 351-370, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34950512

RESUMEN

Progress in the field of precision medicine has changed the landscape of cancer therapy. Precision medicine is propelled by technologies that enable molecular profiling, genomic analysis, and optimized drug design to tailor treatments for individual patients. Although precision medicines have resulted in some clinical successes, the use of many potential therapeutics has been hindered by pharmacological issues, including toxicities and drug resistance. Drug delivery materials and approaches have now advanced to a point where they can enable the modulation of a drug's pharmacological parameters without compromising the desired effect on molecular targets. Specifically, they can modulate a drug's pharmacokinetics, stability, absorption, and exposure to tumours and healthy tissues, and facilitate the administration of synergistic drug combinations. This Review highlights recent progress in precision therapeutics and drug delivery, and identifies opportunities for strategies to improve the therapeutic index of cancer drugs, and consequently, clinical outcomes.

17.
Nat Commun ; 12(1): 6667, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795269

RESUMEN

Inhibition of HER2 in HER2-amplified breast cancer has been remarkably successful clinically, as demonstrated by the efficacy of HER-kinase inhibitors and HER2-antibody treatments. Whilst resistance to HER2 inhibition is common in the metastatic setting, the specific programs downstream of HER2 driving resistance are not established. Through genomic profiling of 733 HER2-amplified breast cancers, we identify enrichment of somatic alterations that promote MEK/ERK signaling in metastatic tumors with shortened progression-free survival on anti-HER2 therapy. These mutations, including NF1 loss and ERBB2 activating mutations, are sufficient to mediate resistance to FDA-approved HER2 kinase inhibitors including tucatinib and neratinib. Moreover, resistant tumors lose AKT dependence while undergoing a dramatic sensitization to MEK/ERK inhibition. Mechanistically, this driver pathway switch is a result of MEK-dependent activation of CDK2 kinase. These results establish genetic activation of MAPK as a recurrent mechanism of anti-HER2 therapy resistance that may be effectively combated with MEK/ERK inhibitors.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Escape del Tumor/efectos de los fármacos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Lapatinib/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Mutación , Oxazoles/farmacología , Piridinas/farmacología , Quinazolinas/farmacología , Quinolinas/farmacología , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
19.
Nat Commun ; 12(1): 5053, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34417459

RESUMEN

Previous studies have suggested that PTEN loss is associated with p110ß signaling dependency, leading to the clinical development of p110ß-selective inhibitors. Here we use a panel pre-clinical models to reveal that PI3K isoform dependency is not governed by loss of PTEN and is impacted by feedback inhibition and concurrent PIK3CA/PIK3CB alterations. Furthermore, while pan-PI3K inhibition in PTEN-deficient tumors is efficacious, upregulation of Insulin Like Growth Factor 1 Receptor (IGF1R) promotes resistance. Importantly, we show that this resistance can be overcome through targeting AKT and we find that AKT inhibitors are superior to pan-PI3K inhibition in the context of PTEN loss. However, in the presence of wild-type PTEN and PIK3CA-activating mutations, p110α-dependent signaling is dominant and selectively inhibiting p110α is therapeutically superior to AKT inhibition. These discoveries reveal a more nuanced understanding of PI3K isoform dependency and unveil novel strategies to selectively target PI3K signaling nodes in a context-specific manner.


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/enzimología , Transducción de Señal , Animales , Línea Celular Tumoral , Retroalimentación Fisiológica , Humanos , Isoenzimas/metabolismo , Masculino , Ratones , Modelos Biológicos , Organoides/efectos de los fármacos , Organoides/metabolismo , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/metabolismo , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Receptor IGF Tipo 1/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...