RESUMEN
Pathogenic variants (PVs) in EPAS1, which encodes hypoxia-inducible factor-2α (HIF-2α), could be the underlying genetic cause of about 3%-6% of pheochromocytoma and paragangliomas (PPGLs). EPAS1-related PPGLs may occur as isolated tumors or as part of Pacak-Zhuang Syndrome (PZS) with two or more of a triad of PPGL, polycythemia, and somatostatinoma. HIF-2α plays a critical role in the regulation of the cellular hypoxia pathway. When a gain-of-function PV is acquired, HIF-2α evades steady-state hydroxylation by the prolyl hydroxylase type 2 (PHD2), which accelerates von Hippel-Lindau (VHL)-mediated proteasomal degradation. In this situation, HIF-2α is stabilized and can translocate to the nucleus, inducing the expression of several genes involved in tumorigenesis. This leads to the development of PPGL and other manifestations of PZS. EPAS1-related PPGLs usually occur in the second or third decade of life, more frequently in females, and are usually multiple, adrenal and extra-adrenal, and norepinephrine-secreting. In addition, these tumors carry an increased metastatic potential and have been reported with metastatic disease in up to 30% of cases. While polycythemia is fairly common in PZS, somatostatinomas are rare. It has been suggested that the character of the acquired PV in EPAS1, which affects its binding to PHD2, correlates with certain phenotypes in PZS. PVs in EPAS1 that have been found in related sporadic PPGLs have also been associated with hypoxic conditions including cyanotic congenital heart disease, hemoglobinopathies and high altitude. Understanding the hypoxia pathway and its role in the pathogenesis of PPGL may open a new avenue for developing effective therapies for these tumors. Indeed, one of these therapies is Belzutifan, a HIF-2α inhibitor that is being tested in the treatment of metastatic PPGLs.
RESUMEN
Neuroblastoma is a childhood developmental cancer; however, its embryonic origins remain poorly understood. Moreover, in-depth studies of early tumor-driving events are limited because of the lack of appropriate models. Herein, we analyzed RNA sequencing data obtained from human neuroblastoma samples and found that loss of expression of trunk neural crest-enriched gene MOXD1 associates with advanced disease and worse outcome. Further, by using single-cell RNA sequencing data of human neuroblastoma cells and fetal adrenal glands and creating in vivo models of zebrafish, chick, and mouse, we show that MOXD1 is a determinate of tumor development. In addition, we found that MOXD1 expression is highly conserved and restricted to mesenchymal neuroblastoma cells and Schwann cell precursors during healthy development. Our findings identify MOXD1 as a lineage-restricted tumor-suppressor gene in neuroblastoma, potentiating further stratification of these tumors and development of novel therapeutic interventions.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Neuroblastoma , Pez Cebra , Animales , Humanos , Ratones , Línea Celular Tumoral , Linaje de la Célula/genética , Cresta Neural/metabolismo , Cresta Neural/patología , Neuroblastoma/genética , Neuroblastoma/patología , Neuroblastoma/metabolismo , Células de Schwann/metabolismo , Células de Schwann/patología , Pez Cebra/genéticaRESUMEN
Multiple accessory pathways (APs) can develop in patients with Ebstein anomaly. Rarely, these APs can participate in antidromic atrioventricular reentrant tachycardia (AVRT) which can be life-threatening and requires unique considerations for acute management and ultimate ablation. These considerations are discussed herein.
RESUMEN
There is increasing interest in how immune cells in the meninges-the membranes that surround the brain and spinal cord-contribute to homeostasis and disease in the central nervous system1,2. The outer layer of the meninges, the dura mater, has recently been described to contain both innate and adaptive immune cells, and functions as a site for B cell development3-6. Here we identify organized lymphoid structures that protect fenestrated vasculature in the dura mater. The most elaborate of these dural-associated lymphoid tissues (DALT) surrounded the rostral-rhinal confluence of the sinuses and included lymphatic vessels. We termed this structure, which interfaces with the skull bone marrow and a comparable venous plexus at the skull base, the rostral-rhinal venolymphatic hub. Immune aggregates were present in DALT during homeostasis and expanded with age or after challenge with systemic or nasal antigens. DALT contain germinal centre B cells and support the generation of somatically mutated, antibody-producing cells in response to a nasal pathogen challenge. Inhibition of lymphocyte entry into the rostral-rhinal hub at the time of nasal viral challenge abrogated the generation of germinal centre B cells and class-switched plasma cells, as did perturbation of B-T cell interactions. These data demonstrate a lymphoid structure around vasculature in the dura mater that can sample antigens and rapidly support humoral immune responses after local pathogen challenge.
Asunto(s)
Duramadre , Inmunidad Humoral , Tejido Linfoide , Venas , Administración Intranasal , Antígenos/administración & dosificación , Antígenos/inmunología , Médula Ósea/inmunología , Sistema Nervioso Central/irrigación sanguínea , Sistema Nervioso Central/inmunología , Duramadre/irrigación sanguínea , Duramadre/inmunología , Centro Germinal/citología , Centro Germinal/inmunología , Vasos Linfáticos/inmunología , Tejido Linfoide/irrigación sanguínea , Tejido Linfoide/inmunología , Células Plasmáticas/inmunología , Cráneo/irrigación sanguínea , Linfocitos T/inmunología , Venas/fisiología , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Animales , Ratones , Anciano de 80 o más AñosRESUMEN
Carrimycin is a synthetic macrolide antibiotic that has been shown to have anti-cancer activity; however, its exact mechanism of action and molecular target were previously unknown. It was recently elucidated that Isovalerylspiramycin I (ISP I), the active component of carrimycin, targets selenoprotein H (SelH), a nucleolar reactive oxygen species-scavenging enzyme in the selenoprotein family. ISP I treatment accelerates SelH degradation, resulting in oxidative stress, disrupted ribosomal biogenesis, and apoptosis in tumor cells. Specifically, ISP I disrupts the association between RNA polymerase I and ribosomal DNA in the nucleolus. This inhibits ribosomal RNA transcription and subsequent ribosomal assembly, which prevents cancer cells from sustaining elevated rates of protein synthesis and cellular proliferation that are necessary for tumor growth and malignancy. In this review, we (1) describe the historical categorization and evolution of anti-cancer agents, including macrolide antibiotics, (2) outline the discovery of SelH as a target of ISP I, and (3) summarize the ways in which carrimycin has been used both clinically and at the bench to date and propose additional potential therapeutic uses.
RESUMEN
This article is a summary of the plenary lecture presented by Jared Rosenblum that was awarded the Manger Prize at the Sixth International Symposium on Pheochromocytoma/Paraganglioma held on 19-22 October 2022 in Prague, Czech Republic. Herein, we review our initial identification of a new syndrome of multiple paragangliomas, somatostatinomas, and polycythemia caused by early postzygotic mosaic mutations in EPAS1, encoding hypoxia-inducible factor 2 alpha (HIF-2α), and our continued exploration of new disease phenotypes in this syndrome, including vascular malformations and neural tube defects. Continued recruitment and close monitoring of patients with this syndrome as well as the generation and study of a corresponding disease mouse model as afforded by the pheochromocytoma/paraganglioma translational program at the National Institutes of Health has provided new insights into the natural history of these developmental anomalies and the pathophysiologic role of HIF-2α. Further, these studies have highlighted the importance of the timing of genetic defects in the development of related disease phenotypes. The recent discovery and continued study of this syndrome has not only rapidly evolved our understanding of pheochromocytoma and paraganglioma but also deepened our understanding of other developmental tumor syndromes, heritable syndromes, and sporadic diseases.
Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Paraganglioma , Feocromocitoma , Animales , Ratones , Feocromocitoma/genética , Feocromocitoma/patología , Síndrome , Paraganglioma/genética , Paraganglioma/patología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Neoplasias de las Glándulas Suprarrenales/genética , Neoplasias de las Glándulas Suprarrenales/patologíaRESUMEN
Paediatric phaeochromocytomas and paragangliomas (PPGLs), though rare tumours, are associated with significant disability and death in the most vulnerable of patients early in their lives. However, unlike cryptogenic and insidious disease states, the clinical presentation of paediatric patients with PPGLs can be rather overt, allowing early diagnosis, granted that salient findings are recognized. Additionally, with prompt and effective intervention, prognosis is favourable if timely intervention is implemented. For this reason, this review focuses on four exemplary paediatric cases, succinctly emphasizing the now state-of-the-art concepts in paediatric PPGL management.
RESUMEN
Mapping cranial vasculature and adjacent neurovascular interfaces in their entirety will enhance our understanding of central nervous system function in any physiologic state. We present a workflow to visualize in situ murine vasculature and surrounding cranial structures using terminal polymer casting of vessels, iterative sample processing and image acquisition, and automated image registration and processing. While this method does not obtain dynamic imaging due to mouse sacrifice, these studies can be performed before sacrifice and processed with other acquired images. For complete details on the use and execution of this protocol, please refer to Rosenblum et al.1.
Asunto(s)
Cráneo , Animales , Ratones , Flujo de TrabajoRESUMEN
Originally approved in 1979, a specific grading classification for central nervous system (CNS) tumors was devised by the World Health Organization (WHO) in an effort to guide cancer treatment and better understand prognosis. These "blue books" have since undergone several iterations based on tumor location, advancements in histopathology, and most recently, diagnostic molecular pathology in its fifth edition. As new research methods have evolved to elucidate complex molecular mechanisms of tumorigenesis, a need to update and integrate these findings into the WHO grading scheme has become apparent. Epigenetic tools represent an area of burgeoning interest that encompasses all non-Mendelian inherited genetic features affecting gene expression, including but not limited to chromatin remodeling complexes, DNA methylation, and histone regulating enzymes. The SWItch/Sucrose non-fermenting (SWI/SNF) chromatin remodeling complex is the largest mammalian family of chromatin remodeling proteins and is estimated to be altered in 20-25% of all human malignancies; however, the ways in which it contributes to tumorigenesis are not fully understood. We recently discovered that CNS tumors with SWI/SNF mutations have revealed an oncogenic role for endogenous retroviruses (ERVs), remnants of exogenous retroviruses that integrated into the germline and are inherited like Mendelian genes, several of which retain open reading frames for proteins whose expression putatively contributes to tumor formation. Herein, we analyzed the latest WHO classification scheme for all CNS tumors with documented SWI/SNF mutations and/or aberrant ERV expression, and we summarize this information to highlight potential research opportunities that could be integrated into the grading scheme to better delineate diagnostic criteria and therapeutic targets.
RESUMEN
BACKGROUND: Reports of cerebrovascular ischemia and stroke occurring as predominant neurological sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which causes coronavirus disease 2019 (COVID-19), are increasingly evident within the literature. While various pathophysiological mechanisms have been postulated, including hypercoagulability, endothelial invasion, and systemic inflammation, discrete mechanisms for viral neurotropism remain unclear and controversial. OBSERVATIONS: The authors present a unique case study of a 64-year-old male with acute COVID-19 infection and acute worsening of previously stable cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a rare heritable arteriopathy due to mutation in the Notch3 gene, which is critical for vascular development and tone. Delayed cranial neuropathies, brainstem fluid-attenuated inversion recovery signal, and enhancement of olfactory and vagus nerves on magnetic resonance neurography in this patient further support viral neurotropism via cranial nerves in addition to cerebral vasculature. LESSONS: To the authors' knowledge, this is the first case in the literature that not only demonstrates the consequences of COVID-19 infection in a patient with altered cerebrovascular autoregulation such as CADASIL but also highlights the tropism of SARS-CoV-2 for (1) cranial nerves as a mode of entry to the central nervous system and (2) vessels as a cause of cerebrovascular ischemia.
RESUMEN
Protein phosphatases play essential roles as negative regulators of kinases and signaling cascades involved in cytoskeletal organization. Protein phosphatase 2A (PP2A) is highly conserved and is the predominant serine/threonine phosphatase in the nervous system, constituting more than 70% of all neuronal phosphatases. PP2A is involved in diverse regulatory functions, including cell cycle progression, apoptosis, and DNA repair. Although PP2A has historically been identified as a tumor suppressor, inhibition of PP2A has paradoxically demonstrated potential as a therapeutic target for various cancers. LB100, a water-soluble, small-molecule competitive inhibitor of PP2A, has shown particular promise as a chemo- and radio-sensitizing agent. Preclinical success has led to a profusion of clinical trials on LB100 adjuvant therapies, including a phase I trial in extensive-stage small-cell lung cancer, a phase I/II trial in myelodysplastic syndrome, a phase II trial in recurrent glioblastoma, and a completed phase I trial assessing the safety of LB100 and docetaxel in various relapsed solid tumors. Herein, we review the development of LB100, the role of PP2A in cancer biology, and recent advances in targeting PP2A inhibition in immunotherapy.
Asunto(s)
Neoplasias , Proteína Fosfatasa 2 , Humanos , Proteína Fosfatasa 2/metabolismo , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Neoplasias/terapiaRESUMEN
A 13-year-old male presented with a 10-day history of left eye swelling and pain. These symptoms prompted presentation to the emergency department. He had no significant past medical history and no preceding fevers or chills. He was found on examination of the eyes and the orbit to have left supraorbital erythema, edema, and pain with upward and medial gaze. Examination of the globe, fundus, and visual fields were normal. His white blood cell count was 6.2 (x1000/mm3) with an erythrocyte sedimentation rate of 4 (mm/hr). Diagnostic endoscopic biopsy was performed. Here we present this case alongside clinical reasoning and diagnostic evaluation with relevant input from respective experts. This case discussion reviews the final diagnosis, as well as the corresponding evaluation and management. Diagnostic algorithms based on literature review and clinical experience are also included.
Asunto(s)
Edema , Ojo , Masculino , Humanos , Adolescente , Edema/etiología , DolorRESUMEN
Pediatric medulloblastoma (MB) is the most common pediatric brain tumor with varying prognoses depending on the distinct molecular subtype. The four consensus subgroups are WNT, Sonic hedgehog (SHH), Group 3, and Group 4, which underpin the current 2021 WHO classification of MB. While the field of knowledge for treating this disease has significantly advanced over the past decade, a deeper understanding is still required to improve the clinical outcomes for pediatric patients, who are often vulnerable in ways that adult patients are not. Here, we discuss how recent insights into the pathogenesis of pediatric medulloblastoma have directed current and future research. This review highlights new developments in understanding the four molecular subtypes' pathophysiology, epigenetics, and therapeutic targeting. In addition, we provide a focused discussion of recent developments in imaging, and in the surgery, chemotherapy, and radiotherapy of pediatric medulloblastoma. The article includes a brief explanation of healthcare costs associated with medulloblastoma treatment.
RESUMEN
Understanding physiologic and pathologic central nervous system function depends on our ability to map the entire in situ cranial vasculature and neurovascular interfaces. To accomplish this, we developed a non-invasive workflow to visualize murine cranial vasculature via polymer casting of vessels, iterative sample processing and micro-computed tomography, and automatic deformable image registration, feature extraction, and visualization. This methodology is applicable to any tissue and allows rapid exploration of normal and altered pathologic states.
Asunto(s)
Sistema Cardiovascular , Ratones , Animales , Microtomografía por Rayos X/métodos , Cráneo/diagnóstico por imagenRESUMEN
Chiari Malformation Type I (CMI) is a congenital malformation diagnosed by MRI findings of at least 5 mm of cerebellar ectopy below the foramen magnum. CM1 is frequently associated with syringomyelia. Herein, we discuss the history of CMI and syringomyelia, including early pathological and surgical studies. We also describe recent investigations into the pathogenesis and pathophysiology of CMI and their practical implications on management and surgical intervention. We also highlight the recent development of the Common Data Elements for CMI, providing a framework for ongoing investigations. Finally, we discuss current controversies of surgical management in CMI.
Asunto(s)
Malformación de Arnold-Chiari , Siringomielia , Malformación de Arnold-Chiari/diagnóstico , Malformación de Arnold-Chiari/diagnóstico por imagen , Foramen Magno/patología , Foramen Magno/cirugía , Humanos , Imagen por Resonancia Magnética , Siringomielia/diagnóstico por imagen , Siringomielia/cirugíaRESUMEN
Human endogenous retroviruses (HERVs), which are critical to normal embryologic development and downregulated during normal maturation, have been implicated in a variety of cancers. Abnormal persistent production of HERVs has been suggested to play a role in oncogenesis and to confer stem cell properties to cells. We recently demonstrated that the most recently incorporated HERV element (HERV-K HML-2) has been associated with the pathogenesis of the embryonal atypical teratoid rhabdoid tumor (AT/RT), shifting our understanding of embryonal tumor development. HML-2 expression is vital for proper human development and its expression is suppressed via methylation or chromatin remodeling as cells differentiate. We previously found that dysfunctional chromatin remodeling due to loss of SMARCB1 expression induces HML-2 envelope (env) expression, impairing cellular differentiation and migration, and facilitating tumor growth in AT/RT. Epigenetic dysregulation in other embryonal tumors with concomitant expression of stem-cell markers may facilitate HML-2 expression. Future studies could utilize HML-2 as potential diagnostic criteria, use its expression as a treatment biomarker, and investigate the efficacy of therapies targeting cells with high HML-2 expression.
RESUMEN
We recently described a transtentorial venous system (TTVS), which to our knowledge was previously unknown, connecting venous drainage throughout the brain in humans. Prior to this finding, it was believed that the embryologic tentorial plexus regresses, resulting in a largely avascular tentorium. Our finding contradicted this understanding and necessitated further investigation into the development of the TTVS. Herein, we sought to investigate mice as a model to study the development of this system. First, using vascular casting and ex vivo micro-CT, we demonstrated that this TTVS is conserved in adult mice. Next, using high-resolution MRI, we identified the primitive tentorial venous plexus in the murine embryo at day 14.5. We also found that, at this embryologic stage, the tentorial plexus drains the choroid plexus. Finally, using vascular casting and micro-CT, we found that the TTVS is the dominant venous drainage in the early postnatal period (P8). Herein, we demonstrated that the TTVS is conserved between mice and humans, and we present a longitudinal study of its development. In addition, our findings establish mice as a translational model for further study of this system and its relationship to intracranial physiology.
Asunto(s)
Venas/anatomía & histología , Venas/diagnóstico por imagen , Animales , Humanos , RatonesRESUMEN
The inner ear is a complex organ housed within the petrous bone of the skull. Its intimate relationship with the brain enables the transmission of auditory and vestibular signals via cranial nerves. Development of this structure from neural crest begins in utero and continues into early adulthood. However, the anatomy of the murine inner ear has only been well-characterized from early embryogenesis to post-natal day 6. Inner ear and skull base development continue into the post-natal period in mice and early adulthood in humans. Traditional methods used to evaluate the inner ear in animal models, such as histologic sectioning or paint-fill and corrosion, cannot visualize this complex anatomy in situ. Further, as the petrous bone ossifies in the postnatal period, these traditional techniques become increasingly difficult. Advances in modern imaging, including high resolution Micro-CT and MRI, now allow for 3D visualization of the in situ anatomy of organs such as the inner ear. Here, we present a longitudinal atlas of the murine inner ear using high resolution ex vivo Micro-CT and MRI.