Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 360
Filtrar
1.
Sci Adv ; 10(28): eadk5462, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38985877

RESUMEN

Adherens junction-associated protein 1 (AJAP1) has been implicated in brain diseases; however, a pathogenic mechanism has not been identified. AJAP1 is widely expressed in neurons and binds to γ-aminobutyric acid type B receptors (GBRs), which inhibit neurotransmitter release at most synapses in the brain. Here, we show that AJAP1 is selectively expressed in dendrites and trans-synaptically recruits GBRs to presynaptic sites of neurons expressing AJAP1. We have identified several monoallelic AJAP1 variants in individuals with epilepsy and/or neurodevelopmental disorders. Specifically, we show that the variant p.(W183C) lacks binding to GBRs, resulting in the inability to recruit them. Ultrastructural analysis revealed significantly decreased presynaptic GBR levels in Ajap1-/- and Ajap1W183C/+ mice. Consequently, these mice exhibited reduced GBR-mediated presynaptic inhibition at excitatory and inhibitory synapses, along with impaired synaptic plasticity. Our study reveals that AJAP1 enables the postsynaptic neuron to regulate the level of presynaptic GBR-mediated inhibition, supporting the clinical relevance of loss-of-function AJAP1 variants.


Asunto(s)
Neurotransmisores , Sinapsis , Transmisión Sináptica , Animales , Humanos , Neurotransmisores/metabolismo , Ratones , Sinapsis/metabolismo , Masculino , Alelos , Femenino , Neuronas/metabolismo , Mutación con Pérdida de Función , Epilepsia/metabolismo , Epilepsia/genética , Epilepsia/patología , Ratones Noqueados , Plasticidad Neuronal , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología
2.
NEJM AI ; 1(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38962029

RESUMEN

BACKGROUND: Diagnosing genetic disorders requires extensive manual curation and interpretation of candidate variants, a labor-intensive task even for trained geneticists. Although artificial intelligence (AI) shows promise in aiding these diagnoses, existing AI tools have only achieved moderate success for primary diagnosis. METHODS: AI-MARRVEL (AIM) uses a random-forest machine-learning classifier trained on over 3.5 million variants from thousands of diagnosed cases. AIM additionally incorporates expert-engineered features into training to recapitulate the intricate decision-making processes in molecular diagnosis. The online version of AIM is available at https://ai.marrvel.org. To evaluate AIM, we benchmarked it with diagnosed patients from three independent cohorts. RESULTS: AIM improved the rate of accurate genetic diagnosis, doubling the number of solved cases as compared with benchmarked methods, across three distinct real-world cohorts. To better identify diagnosable cases from the unsolved pools accumulated over time, we designed a confidence metric on which AIM achieved a precision rate of 98% and identified 57% of diagnosable cases out of a collection of 871 cases. Furthermore, AIM's performance improved after being fine-tuned for targeted settings including recessive disorders and trio analysis. Finally, AIM demonstrated potential for novel disease gene discovery by correctly predicting two newly reported disease genes from the Undiagnosed Diseases Network. CONCLUSIONS: AIM achieved superior accuracy compared with existing methods for genetic diagnosis. We anticipate that this tool may aid in primary diagnosis, reanalysis of unsolved cases, and the discovery of novel disease genes. (Funded by the NIH Common Fund and others.).

3.
Eur J Hum Genet ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965372

RESUMEN

This study aimed to uncover novel genes associated with neurodevelopmental disorders (NDD) by leveraging recent large-scale de novo burden analysis studies to enhance a virtual gene panel used in a diagnostic setting. We re-analyzed historical trio-exome sequencing data from 745 individuals with NDD according to the most recent diagnostic standards, resulting in a cohort of 567 unsolved individuals. Next, we designed a virtual gene panel containing candidate genes from three large de novo burden analysis studies in NDD and prioritized candidate genes by stringent filtering for ultra-rare de novo variants with high pathogenicity scores. Our analysis revealed an increased burden of de novo variants in our selected candidate genes within the unsolved NDD cohort and identified qualifying de novo variants in seven candidate genes: RIF1, CAMK2D, RAB11FIP4, AGO3, PCBP2, LEO1, and VCP. Clinical data were collected from six new individuals with de novo or inherited LEO1 variants and three new individuals with de novo PCBP2 variants. Our findings add additional evidence for LEO1 as a risk gene for autism and intellectual disability. Furthermore, we prioritize PCBP2 as a candidate gene for NDD associated with motor and language delay. In summary, by leveraging de novo burden analysis studies, employing a stringent variant filtering pipeline, and engaging in targeted patient recruitment, our study contributes to the identification of novel genes implicated in NDDs.

4.
medRxiv ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38712270

RESUMEN

Both long-read genome sequencing (lrGS) and the recently published Telomere to Telomere (T2T) reference genome provide increased coverage and resolution across repetitive regions promising heightened structural variant detection and improved mapping. Inversions (INV), intrachromosomal segments which are rotated 180° and inserted back into the same chromosome, are a class of structural variants particularly challenging to detect due to their copy-number neutral state and association with repetitive regions. Inversions represent about 1/20 of all balanced structural chromosome aberrations and can lead to disease by gene disruption or altering regulatory regions of dosage sensitive genes in cis . Here we remapped the genome data from six individuals carrying unsolved cytogenetically detected inversions. An INV6 and INV10 were resolved using GRCh38 and T2T-CHM13. Finally, an INV9 required optical genome mapping, de novo assembly of lrGS data and T2T-CHM13. This inversion disrupted intron 25 of EHMT1, confirming a diagnosis of Kleefstra syndrome 1 (MIM#610253). These three inversions, only mappable in specific references, prompted us to investigate the presence and population frequencies of differential reference regions (DRRs) between T2T-CHM13, GRCh37, GRCh38, the chimpanzee and bonobo, and hundreds of megabases of DRRs were identified. Our results emphasize the significance of the chosen reference genome and the added benefits of lrGS and optical genome mapping in solving rearrangements in challenging regions of the genome. This is particularly important for inversions and may impact clinical diagnostics.

5.
Eur J Hum Genet ; 32(7): 879-883, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38702431

RESUMEN

Numerous large scale genomic studies have uncovered rare but recurrent pathogenetic variants in a significant number of genes encoding epigenetic machinery in cases with neurodevelopmental disorders (NDD) especially autism spectrum disorder (ASD). These findings provide strong support for the functional importance of epigenetic regulators in neurodevelopment. After the clinical genomics evaluation of the patients using exome sequencing, we have identified, three novel protein-truncating variants (PTVs) in the MSL2 gene (OMIM: 614802) which encodes a chromatin modifying enzyme. MSL2 modifies chromatin through both mono-ubiquitination of histone 2B on lysine 34 (K34) and acetylation of histone H4 on lysine 16 (K16). We reported first time the detailed clinical features associated with 3 MSL2 PTVs. There are 15 PTVs (13 de novo) reported from the large genomics studies (12 cases) or ClinVar (3 cases) of NDD, ASD, and developmental disorders (DD) but the specific clinical features for these cases are not described. Taken together, our descriptions of dysmorphic face and other features support the causal role of MSL2 in a likely syndromic neurodevelopmental disorder and add MSL2 to a growing list of epigenetic genes implicated in ASD.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Masculino , Trastorno del Espectro Autista/genética , Femenino , Niño , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Cromatina/genética , Cromatina/metabolismo , Preescolar , Síndrome , Mutación
7.
JCI Insight ; 9(9)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716726

RESUMEN

Childhood-onset essential hypertension (COEH) is an uncommon form of hypertension that manifests in childhood or adolescence and, in the United States, disproportionately affects children of African ancestry. The etiology of COEH is unknown, but its childhood onset, low prevalence, high heritability, and skewed ancestral demography suggest the potential to identify rare genetic variation segregating in a Mendelian manner among affected individuals and thereby implicate genes important to disease pathogenesis. However, no COEH genes have been reported to date. Here, we identify recessive segregation of rare and putatively damaging missense variation in the spectrin domain of spectrin repeat containing nuclear envelope protein 1 (SYNE1), a cardiovascular candidate gene, in 3 of 16 families with early-onset COEH without an antecedent family history. By leveraging exome sequence data from an additional 48 COEH families, 1,700 in-house trios, and publicly available data sets, we demonstrate that compound heterozygous SYNE1 variation in these COEH individuals occurred more often than expected by chance and that this class of biallelic rare variation was significantly enriched among individuals of African genetic ancestry. Using in vitro shRNA knockdown of SYNE1, we show that reduced SYNE1 expression resulted in a substantial decrease in the elasticity of smooth muscle vascular cells that could be rescued by pharmacological inhibition of the downstream RhoA/Rho-associated protein kinase pathway. These results provide insights into the molecular genetics and underlying pathophysiology of COEH and suggest a role for precision therapeutics in the future.


Asunto(s)
Proteínas del Citoesqueleto , Hipertensión Esencial , Secuenciación del Exoma , Proteínas del Tejido Nervioso , Adolescente , Niño , Femenino , Humanos , Masculino , Edad de Inicio , Proteínas del Citoesqueleto/genética , Hipertensión Esencial/genética , Exoma/genética , Predisposición Genética a la Enfermedad , Mutación Missense/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Linaje , Proteína de Unión al GTP rhoA/genética , Estados Unidos/epidemiología , Recién Nacido , Lactante , Preescolar , Adulto Joven
8.
Am J Hum Genet ; 111(5): 841-862, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38593811

RESUMEN

RNA sequencing (RNA-seq) has recently been used in translational research settings to facilitate diagnoses of Mendelian disorders. A significant obstacle for clinical laboratories in adopting RNA-seq is the low or absent expression of a significant number of disease-associated genes/transcripts in clinically accessible samples. As this is especially problematic in neurological diseases, we developed a clinical diagnostic approach that enhanced the detection and evaluation of tissue-specific genes/transcripts through fibroblast-to-neuron cell transdifferentiation. The approach is designed specifically to suit clinical implementation, emphasizing simplicity, cost effectiveness, turnaround time, and reproducibility. For clinical validation, we generated induced neurons (iNeurons) from 71 individuals with primary neurological phenotypes recruited to the Undiagnosed Diseases Network. The overall diagnostic yield was 25.4%. Over a quarter of the diagnostic findings benefited from transdifferentiation and could not be achieved by fibroblast RNA-seq alone. This iNeuron transcriptomic approach can be effectively integrated into diagnostic whole-transcriptome evaluation of individuals with genetic disorders.


Asunto(s)
Transdiferenciación Celular , Fibroblastos , Neuronas , Análisis de Secuencia de ARN , Humanos , Transdiferenciación Celular/genética , Fibroblastos/metabolismo , Fibroblastos/citología , Análisis de Secuencia de ARN/métodos , Neuronas/metabolismo , Neuronas/citología , Transcriptoma , Reproducibilidad de los Resultados , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/diagnóstico , RNA-Seq/métodos , Femenino , Masculino
9.
medRxiv ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496558

RESUMEN

Genes encoding long non-coding RNAs (lncRNAs) comprise a large fraction of the human genome, yet haploinsufficiency of a lncRNA has not been shown to cause a Mendelian disease. CHASERR is a highly conserved human lncRNA adjacent to CHD2-a coding gene in which de novo loss-of-function variants cause developmental and epileptic encephalopathy. Here we report three unrelated individuals each harboring an ultra-rare heterozygous de novo deletion in the CHASERR locus. We report similarities in severe developmental delay, facial dysmorphisms, and cerebral dysmyelination in these individuals, distinguishing them from the phenotypic spectrum of CHD2 haploinsufficiency. We demonstrate reduced CHASERR mRNA expression and corresponding increased CHD2 mRNA and protein in whole blood and patient-derived cell lines-specifically increased expression of the CHD2 allele in cis with the CHASERR deletion, as predicted from a prior mouse model of Chaserr haploinsufficiency. We show for the first time that de novo structural variants facilitated by Alu-mediated non-allelic homologous recombination led to deletion of a non-coding element (the lncRNA CHASERR) to cause a rare syndromic neurodevelopmental disorder. We also demonstrate that CHD2 has bidirectional dosage sensitivity in human disease. This work highlights the need to carefully evaluate other lncRNAs, particularly those upstream of genes associated with Mendelian disorders.

10.
Invest Ophthalmol Vis Sci ; 65(3): 25, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38502138

RESUMEN

Purpose: A molecular diagnosis is only made in a subset of individuals with nonisolated microphthalmia, anophthalmia, and coloboma (MAC). This may be due to underutilization of clinical (whole) exome sequencing (cES) and an incomplete understanding of the genes that cause MAC. The purpose of this study is to determine the efficacy of cES in cases of nonisolated MAC and to identify new MAC phenotypic expansions. Methods: We determined the efficacy of cES in 189 individuals with nonisolated MAC. We then used cES data, a validated machine learning algorithm, and previously published expression data, case reports, and animal models to determine which candidate genes were most likely to contribute to the development of MAC. Results: We found the efficacy of cES in nonisolated MAC to be between 32.3% (61/189) and 48.1% (91/189). Most genes affected in our cohort were not among genes currently screened in clinically available ophthalmologic gene panels. A subset of the genes implicated in our cohort had not been clearly associated with MAC. Our analyses revealed sufficient evidence to support low-penetrance MAC phenotypic expansions involving nine of these human disease genes. Conclusions: We conclude that cES is an effective means of identifying a molecular diagnosis in individuals with nonisolated MAC and may identify putatively damaging variants that would be missed if only a clinically available ophthalmologic gene panel was obtained. Our data also suggest that deleterious variants in BRCA2, BRIP1, KAT6A, KAT6B, NSF, RAC1, SMARCA4, SMC1A, and TUBA1A can contribute to the development of MAC.


Asunto(s)
Anoftalmos , Coloboma , Microftalmía , Animales , Humanos , Anoftalmos/diagnóstico , Anoftalmos/genética , Coloboma/diagnóstico , Coloboma/genética , Secuenciación del Exoma , Microftalmía/diagnóstico , Microftalmía/genética , Algoritmos , ADN Helicasas , Proteínas Nucleares , Factores de Transcripción/genética , Histona Acetiltransferasas
12.
Clin Genet ; 106(1): 95-101, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38545656

RESUMEN

Hypoxic-ischemic encephalopathy (HIE) occurs in up to 7 out of 1000 births and accounts for almost a quarter of neonatal deaths worldwide. Despite the name, many newborns with HIE have little evidence of perinatal hypoxia. We hypothesized that some infants with HIE have genetic disorders that resemble encephalopathy. We reviewed genetic results for newborns with HIE undergoing exome or genome sequencing at a clinical laboratory (2014-2022). Neonates were included if they had a diagnosis of HIE and were delivered ≥35 weeks. Neonates were excluded for cardiopulmonary pathology resulting in hypoxemia or if neuroimaging suggested postnatal hypoxic-ischemic injury. Of 24 patients meeting inclusion criteria, six (25%) were diagnosed with a genetic condition. Four neonates had variants at loci linked to conditions with phenotypic features resembling HIE, including KIF1A, GBE1, ACTA1, and a 15q13.3 deletion. Two additional neonates had variants in genes not previously associated with encephalopathy, including DUOX2 and PTPN11. Of the six neonates with a molecular diagnosis, two had isolated HIE without apparent comorbidities to suggest a genetic disorder. Genetic diagnoses were identified among neonates with and without sentinel labor events, abnormal umbilical cord gasses, and low Apgar scores. These results suggest that genetic evaluation is clinically relevant for patients with perinatal HIE.


Asunto(s)
Secuenciación del Exoma , Hipoxia-Isquemia Encefálica , Humanos , Hipoxia-Isquemia Encefálica/genética , Hipoxia-Isquemia Encefálica/diagnóstico , Hipoxia-Isquemia Encefálica/diagnóstico por imagen , Recién Nacido , Femenino , Masculino , Estudios Retrospectivos , Predisposición Genética a la Enfermedad , Exoma/genética , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/diagnóstico
13.
Genet Med ; 26(7): 101125, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38522068

RESUMEN

PURPOSE: YKT6 plays important roles in multiple intracellular vesicle trafficking events but has not been associated with Mendelian diseases. METHODS: We report 3 unrelated individuals with rare homozygous missense variants in YKT6 who exhibited neurological disease with or without a progressive infantile liver disease. We modeled the variants in Drosophila. We generated wild-type and variant genomic rescue constructs of the fly ortholog dYkt6 and compared their ability in rescuing the loss-of-function phenotypes in mutant flies. We also generated a dYkt6KozakGAL4 allele to assess the expression pattern of dYkt6. RESULTS: Two individuals are homozygous for YKT6 [NM_006555.3:c.554A>G p.(Tyr185Cys)] and exhibited normal prenatal course followed by failure to thrive, developmental delay, and progressive liver disease. Haplotype analysis identified a shared homozygous region flanking the variant, suggesting a common ancestry. The third individual is homozygous for YKT6 [NM_006555.3:c.191A>G p.(Tyr64Cys)] and exhibited neurodevelopmental disorders and optic atrophy. Fly dYkt6 is essential and is expressed in the fat body (analogous to liver) and central nervous system. Wild-type genomic rescue constructs can rescue the lethality and autophagic flux defects, whereas the variants are less efficient in rescuing the phenotypes. CONCLUSION: The YKT6 variants are partial loss-of-function alleles, and the p.(Tyr185Cys) is more severe than p.(Tyr64Cys).


Asunto(s)
Carcinoma Hepatocelular , Discapacidades del Desarrollo , Homocigoto , Neoplasias Hepáticas , Mutación con Pérdida de Función , Mutación Missense , Animales , Femenino , Humanos , Lactante , Masculino , Alelos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Drosophila/genética , Proteínas de Drosophila/genética , Predisposición Genética a la Enfermedad , Hepatopatías/genética , Hepatopatías/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Mutación Missense/genética , Fenotipo , Proteínas de Transporte Vesicular/genética
14.
Hum Genet ; 143(3): 279-291, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38451290

RESUMEN

Biallelic pathogenic variants in MAP3K20, which encodes a mitogen-activated protein kinase, are a rare cause of split-hand foot malformation (SHFM), hearing loss, and nail abnormalities or congenital myopathy. However, heterozygous variants in this gene have not been definitively associated with a phenotype. Here, we describe the phenotypic spectrum associated with heterozygous de novo variants in the linker region between the kinase domain and leucine zipper domain of MAP3K20. We report five individuals with diverse clinical features, including craniosynostosis, limb anomalies, sensorineural hearing loss, and ectodermal dysplasia-like phenotypes who have heterozygous de novo variants in this specific region of the gene. These individuals exhibit both shared and unique clinical manifestations, highlighting the complexity and variability of the disorder. We propose that the involvement of MAP3K20 in endothelial-mesenchymal transition provides a plausible etiology of these features. Together, these findings characterize a disorder that both expands the phenotypic spectrum associated with MAP3K20 and highlights the need for further studies on its role in early human development.


Asunto(s)
Craneosinostosis , Displasia Ectodérmica , Pérdida Auditiva Sensorineural , Heterocigoto , Humanos , Displasia Ectodérmica/genética , Displasia Ectodérmica/patología , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Masculino , Femenino , Craneosinostosis/genética , Fenotipo , Preescolar , Deformidades Congénitas de las Extremidades/genética , Niño , Mutación , Lactante , Quinasas Quinasa Quinasa PAM/genética
15.
Am J Hum Genet ; 111(3): 529-543, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38387458

RESUMEN

The Rab family of guanosine triphosphatases (GTPases) includes key regulators of intracellular transport and membrane trafficking targeting specific steps in exocytic, endocytic, and recycling pathways. DENND5B (Rab6-interacting Protein 1B-like protein, R6IP1B) is the longest isoform of DENND5, an evolutionarily conserved DENN domain-containing guanine nucleotide exchange factor (GEF) that is highly expressed in the brain. Through exome sequencing and international matchmaking platforms, we identified five de novo variants in DENND5B in a cohort of five unrelated individuals with neurodevelopmental phenotypes featuring cognitive impairment, dysmorphism, abnormal behavior, variable epilepsy, white matter abnormalities, and cortical gyration defects. We used biochemical assays and confocal microscopy to assess the impact of DENND5B variants on protein accumulation and distribution. Then, exploiting fluorescent lipid cargoes coupled to high-content imaging and analysis in living cells, we investigated whether DENND5B variants affected the dynamics of vesicle-mediated intracellular transport of specific cargoes. We further generated an in silico model to investigate the consequences of DENND5B variants on the DENND5B-RAB39A interaction. Biochemical analysis showed decreased protein levels of DENND5B mutants in various cell types. Functional investigation of DENND5B variants revealed defective intracellular vesicle trafficking, with significant impairment of lipid uptake and distribution. Although none of the variants affected the DENND5B-RAB39A interface, all were predicted to disrupt protein folding. Overall, our findings indicate that DENND5B variants perturb intracellular membrane trafficking pathways and cause a complex neurodevelopmental syndrome with variable epilepsy and white matter involvement.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Encéfalo/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Lípidos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Proteínas de Unión al GTP rab/metabolismo
16.
FEBS Lett ; 598(4): 415-436, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38320753

RESUMEN

Matrin-3 (MATR3) is an RNA-binding protein implicated in neurodegenerative and neurodevelopmental diseases. However, little is known regarding the role of MATR3 in cryptic splicing within the context of functional genes and how disease-associated variants impact this function. We show that loss of MATR3 leads to cryptic exon inclusion in many transcripts. We reveal that ALS-linked S85C pathogenic variant reduces MATR3 solubility but does not impair RNA binding. In parallel, we report a novel neurodevelopmental disease-associated M548T variant, located in the RRM2 domain, which reduces protein solubility and impairs RNA binding and cryptic splicing repression functions of MATR3. Altogether, our research identifies cryptic events within functional genes and demonstrates how disease-associated variants impact MATR3 cryptic splicing repression function.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/genética , Exones/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN , Proteínas Asociadas a Matriz Nuclear/genética
17.
medRxiv ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38405817

RESUMEN

FLVCR1 encodes Feline leukemia virus subgroup C receptor 1 (FLVCR1), a solute carrier (SLC) transporter within the Major Facilitator Superfamily. FLVCR1 is a widely expressed transmembrane protein with plasma membrane and mitochondrial isoforms implicated in heme, choline, and ethanolamine transport. While Flvcr1 knockout mice die in utero with skeletal malformations and defective erythropoiesis reminiscent of Diamond-Blackfan anemia, rare biallelic pathogenic FLVCR1 variants are linked to childhood or adult-onset neurodegeneration of the retina, spinal cord, and peripheral nervous system. We ascertained from research and clinical exome sequencing 27 individuals from 20 unrelated families with biallelic ultra-rare missense and predicted loss-of-function (pLoF) FLVCR1 variant alleles. We characterize an expansive FLVCR1 phenotypic spectrum ranging from adult-onset retinitis pigmentosa to severe developmental disorders with microcephaly, reduced brain volume, epilepsy, spasticity, and premature death. The most severely affected individuals, including three individuals with homozygous pLoF variants, share traits with Flvcr1 knockout mice and Diamond-Blackfan anemia including macrocytic anemia and congenital skeletal malformations. Pathogenic FLVCR1 missense variants primarily lie within transmembrane domains and reduce choline and ethanolamine transport activity compared with wild-type FLVCR1 with minimal impact on FLVCR1 stability or subcellular localization. Several variants disrupt splicing in a mini-gene assay which may contribute to genotype-phenotype correlations. Taken together, these data support an allele-specific gene dosage model in which phenotypic severity reflects residual FLVCR1 activity. This study expands our understanding of Mendelian disorders of choline and ethanolamine transport and demonstrates the importance of choline and ethanolamine in neurodevelopment and neuronal homeostasis.

18.
medRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260438

RESUMEN

Phospholipase C isozymes (PLCs) hydrolyze phosphatidylinositol 4,5-bisphosphate into inositol 1,4,5-trisphosphate and diacylglycerol, important signaling molecules involved in many cellular processes. PLCG1 encodes the PLCγ1 isozyme that is broadly expressed. Hyperactive somatic mutations of PLCG1 are observed in multiple cancers, but only one germline variant has been reported. Here we describe three unrelated individuals with de novo heterozygous missense variants in PLCG1 (p.Asp1019Gly, p.His380Arg, and p.Asp1165Gly) who exhibit variable phenotypes including hearing loss, ocular pathology and cardiac septal defects. To model these variants in vivo, we generated the analogous variants in the Drosophila ortholog, small wing (sl). We created a null allele slT2A and assessed the expression pattern. sl is broadly expressed, including in wing discs, eye discs, and a subset of neurons and glia. Loss of sl causes wing size reductions, ectopic wing veins and supernumerary photoreceptors. We document that mutant flies exhibit a reduced lifespan and age-dependent locomotor defects. Expressing wild-type sl in slT2A mutant rescues the loss-of-function phenotypes whereas expressing the variants causes lethality. Ubiquitous overexpression of the variants also reduces viability, suggesting that the variants are toxic. Ectopic expression of an established hyperactive PLCG1 variant (p.Asp1165His) in the wing pouch causes severe wing phenotypes, resembling those observed with overexpression of the p.Asp1019Gly or p.Asp1165Gly variants, further arguing that these two are gain-of-function variants. However, the wing phenotypes associated with p.His380Arg overexpression are mild. Our data suggest that the PLCG1 de novo heterozygous missense variants are pathogenic and contribute to the features observed in the probands.

19.
medRxiv ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38293138

RESUMEN

Neurodevelopmental proteasomopathies represent a distinctive category of neurodevelopmental disorders (NDD) characterized by genetic variations within the 26S proteasome, a protein complex governing eukaryotic cellular protein homeostasis. In our comprehensive study, we identified 23 unique variants in PSMC5 , which encodes the AAA-ATPase proteasome subunit PSMC5/Rpt6, causing syndromic NDD in 38 unrelated individuals. Overexpression of PSMC5 variants altered human hippocampal neuron morphology, while PSMC5 knockdown led to impaired reversal learning in flies and loss of excitatory synapses in rat hippocampal neurons. PSMC5 loss-of-function resulted in abnormal protein aggregation, profoundly impacting innate immune signaling, mitophagy rates, and lipid metabolism in affected individuals. Importantly, targeting key components of the integrated stress response, such as PKR and GCN2 kinases, ameliorated immune dysregulations in cells from affected individuals. These findings significantly advance our understanding of the molecular mechanisms underlying neurodevelopmental proteasomopathies, provide links to research in neurodegenerative diseases, and open up potential therapeutic avenues.

20.
Nat Commun ; 15(1): 365, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191484

RESUMEN

WDR44 prevents ciliogenesis initiation by regulating RAB11-dependent vesicle trafficking. Here, we describe male patients with missense and nonsense variants within the WD40 repeats (WDR) of WDR44, an X-linked gene product, who display ciliopathy-related developmental phenotypes that we can model in zebrafish. The patient phenotypic spectrum includes developmental delay/intellectual disability, hypotonia, distinct craniofacial features and variable presence of brain, renal, cardiac and musculoskeletal abnormalities. We demonstrate that WDR44 variants associated with more severe disease impair ciliogenesis initiation and ciliary signaling. Because WDR44 negatively regulates ciliogenesis, it was surprising that pathogenic missense variants showed reduced abundance, which we link to misfolding of WDR autonomous repeats and degradation by the proteasome. We discover that disease severity correlates with increased RAB11 binding, which we propose drives ciliogenesis initiation dysregulation. Finally, we discover interdomain interactions between the WDR and NH2-terminal region that contains the RAB11 binding domain (RBD) and show patient variants disrupt this association. This study provides new insights into WDR44 WDR structure and characterizes a new syndrome that could result from impaired ciliogenesis.


Asunto(s)
Ciliopatías , Genes Ligados a X , Repeticiones WD40 , Animales , Humanos , Masculino , Encéfalo , Ciliopatías/genética , Cognición , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...