Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Mol Oral Microbiol ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39263909

RESUMEN

Numerous Treponema species are prevalent in the dysbiotic subgingival microbial community during periodontitis. The major outer sheath protein is a highly expressed virulence factor of the well-characterized species Treponema denticola. Msp forms an oligomeric membrane protein complex with adhesin and porin properties and contributes to host-microbial interaction. Treponema maltophilum and Treponema lecithinolyticum species are also prominent during periodontitis but are relatively understudied. Msp-like membrane surface proteins exist in T. maltophilum (MspA) and T. lecithinolyticum (MspTL), but limited information exists regarding their structural features or functionality. Protein profiling reveals numerous differences between these species, but minimal differences between strains of the same species. Using protein modeling tools, we predict MspA and MspTL monomeric forms to be large ß-barrel structures composed of 20 all-next-neighbor antiparallel ß strands which most likely adopt a homotrimer formation. Using cell fractionation, Triton X-114 phase partitioning, heat modifiability, and chemical and detergent release assays, we found evidence of amphiphilic integral membrane-associated oligomerization for both native MspA and MspTL in intact spirochetes. Proteinase K accessibility and immunofluorescence assays demonstrate surface exposure of MspA and MspTL. Functionally, purified recombinant MspA or MspTL monomer proteins can impair neutrophil chemotaxis. Expressions of MspA or MspTL with a PelB leader sequence in Escherichia coli also demonstrate surface exposure and can impair neutrophil chemotaxis in an in vivo air pouch model of inflammation. Collectively, our data demonstrate that MspA and MspTL membrane proteins can contribute to pathogenesis of these understudied oral spirochete species.

2.
Proc Natl Acad Sci U S A ; 121(35): e2405746121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39172787

RESUMEN

While macrophage heterogeneity during metabolic dysfunction-associated steatohepatitis (MASH) has been described, the fate of these macrophages during MASH regression is poorly understood. Comparing macrophage heterogeneity during MASH progression vs regression, we identified specific macrophage subpopulations that are critical for MASH/fibrosis resolution. We elucidated the restorative pathways and gene signatures that define regression-associated macrophages and establish the importance of TREM2+ macrophages during MASH regression. Liver-resident Kupffer cells are lost during MASH and are replaced by four distinct monocyte-derived macrophage subpopulations. Trem2 is expressed in two macrophage subpopulations: i) monocyte-derived macrophages occupying the Kupffer cell niche (MoKC) and ii) lipid-associated macrophages (LAM). In regression livers, no new transcriptionally distinct macrophage subpopulation emerged. However, the relative macrophage composition changed during regression compared to MASH. While MoKC was the major macrophage subpopulation during MASH, they decreased during regression. LAM was the dominant macrophage subtype during MASH regression and maintained Trem2 expression. Both MoKC and LAM were enriched in disease-resolving pathways. Absence of TREM2 restricted the emergence of LAMs and formation of hepatic crown-like structures. TREM2+ macrophages are functionally important not only for restricting MASH-fibrosis progression but also for effective regression of inflammation and fibrosis. TREM2+ macrophages are superior collagen degraders. Lack of TREM2+ macrophages also prevented elimination of hepatic steatosis and inactivation of HSC during regression, indicating their significance in metabolic coordination with other cell types in the liver. TREM2 imparts this protective effect through multifactorial mechanisms, including improved phagocytosis, lipid handling, and collagen degradation.


Asunto(s)
Macrófagos del Hígado , Cirrosis Hepática , Macrófagos , Glicoproteínas de Membrana , Receptores Inmunológicos , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Animales , Ratones , Macrófagos/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/genética , Macrófagos del Hígado/metabolismo , Hígado/metabolismo , Hígado/patología , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Masculino , Lípidos , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado Graso/genética , Ratones Noqueados
3.
BMC Genomics ; 25(1): 646, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943082

RESUMEN

BACKGROUND: Ménière's disease (MD) is a disorder of the inner ear that causes episodic bouts of severe dizziness, roaring tinnitus, and fluctuating hearing loss. To date, no targeted therapy exists. As such, we have undertaken a large whole genome sequencing study on carefully phenotyped unilateral MD patients with the goal of gene/pathway discovery and a move towards targeted intervention. This study was a retrospective review of patients with a history of Ménière's disease. Genomic DNA, acquired from saliva samples, was purified and subjected to whole genome sequencing. RESULTS: Stringent variant calling, performed on 511 samples passing quality checks, followed by gene-based filtering by recurrence and proximity in molecular interaction networks, led to 481 high priority MD genes. These high priority genes, including MPHOSPH8, MYO18A, TRIOBP, OTOGL, TNC, and MYO6, were previously implicated in hearing loss, balance, and cochlear function, and were significantly enriched in common variant studies of hearing loss. Validation in an independent MD cohort confirmed 82 recurrent genes. Pathway analysis pointed to cell-cell adhesion, extracellular matrix, and cellular energy maintenance as key mediators of MD. Furthermore, the MD-prioritized genes were highly expressed in human inner ear hair cells and dark/vestibular cells, and were differentially expressed in a mouse model of hearing loss. CONCLUSION: By enabling the development of model systems that may lead to targeted therapies and MD screening panels, the genes and variants identified in this study will inform diagnosis and treatment of MD.


Asunto(s)
Hidropesía Endolinfática , Genómica , Enfermedad de Meniere , Enfermedad de Meniere/genética , Humanos , Hidropesía Endolinfática/genética , Animales , Ratones , Masculino , Femenino , Estudios Retrospectivos , Secuenciación Completa del Genoma , Persona de Mediana Edad , Adulto
4.
Glia ; 72(5): 916-937, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38372375

RESUMEN

Schwann cells (SCs) undergo phenotypic transformation and then orchestrate nerve repair following PNS injury. The ligands and receptors that activate and sustain SC transformation remain incompletely understood. Proteins released by injured axons represent important candidates for activating the SC Repair Program. The low-density lipoprotein receptor-related protein-1 (LRP1) is acutely up-regulated in SCs in response to injury, activating c-Jun, and promoting SC survival. To identify novel LRP1 ligands released in PNS injury, we applied a discovery-based approach in which extracellular proteins in the injured nerve were captured using Fc-fusion proteins containing the ligand-binding motifs of LRP1 (CCR2 and CCR4). An intracellular neuron-specific protein, Protein Kinase C and Casein Kinase Substrate in Neurons (PACSIN1) was identified and validated as an LRP1 ligand. Recombinant PACSIN1 activated c-Jun and ERK1/2 in cultured SCs. Silencing Lrp1 or inhibiting the LRP1 cell-signaling co-receptor, the NMDA-R, blocked the effects of PACSIN1 on c-Jun and ERK1/2 phosphorylation. Intraneural injection of PACSIN1 into crush-injured sciatic nerves activated c-Jun in wild-type mice, but not in mice in which Lrp1 is conditionally deleted in SCs. Transcriptome profiling of SCs revealed that PACSIN1 mediates gene expression events consistent with transformation to the repair phenotype. PACSIN1 promoted SC migration and viability following the TNFα challenge. When Src family kinases were pharmacologically inhibited or the receptor tyrosine kinase, TrkC, was genetically silenced or pharmacologically inhibited, PACSIN1 failed to induce cell signaling and prevent SC death. Collectively, these studies demonstrate that PACSIN1 is a novel axon-derived LRP1 ligand that activates SC repair signaling by transactivating TrkC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Axones , Células de Schwann , Animales , Ratones , Ratas , Supervivencia Celular , Células Cultivadas , Ligandos , Ratas Sprague-Dawley , Proteínas Tirosina Quinasas Receptoras/metabolismo , Células de Schwann/metabolismo , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/farmacología , Proteínas Recombinantes
5.
Transl Psychiatry ; 14(1): 109, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395906

RESUMEN

Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium. In this study, we replicated the results of our previous study using network propagation methods in a genome-wide association study of an independent sample of 2039 patients from the International Consortium on Lithium Genetics (ConLiGen) study. We identified functional enrichment in focal adhesion and PI3K-Akt pathways, but we did not find an association with the ECM pathway. Our results suggest that deficits in the neuronal growth cone and PI3K-Akt signaling, but not in ECM proteins, may influence response to lithium in BD.


Asunto(s)
Trastorno Bipolar , Litio , Humanos , Litio/farmacología , Litio/uso terapéutico , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/genética , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasas/genética , Estudio de Asociación del Genoma Completo , Multiómica , Adhesiones Focales
6.
Cell Mol Gastroenterol Hepatol ; 17(1): 93-106, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37743012

RESUMEN

Liver fibrosis of different etiologies is a serious health problem worldwide. There is no effective therapy available for liver fibrosis except the removal of the underlying cause of injury or liver transplantation. Development of liver fibrosis is caused by fibrogenic myofibroblasts that are not present in the normal liver, but rather activate from liver resident mesenchymal cells in response to chronic toxic or cholestatic injury. Many studies indicate that liver fibrosis is reversible when the causative agent is removed. Regression of liver fibrosis is associated with the disappearance of activated myofibroblasts and resorption of the fibrous scar. In this review, we discuss the results of genetic tracing and cell fate mapping of hepatic stellate cells and portal fibroblasts, their specific characteristics, and potential phenotypes. We summarize research progress in the understanding of the molecular mechanisms underlying the development and reversibility of liver fibrosis, including activation, apoptosis, and inactivation of myofibroblasts.


Asunto(s)
Cirrosis Hepática , Miofibroblastos , Humanos , Miofibroblastos/patología , Cirrosis Hepática/patología , Fibroblastos/patología , Hepatocitos
7.
Am J Pathol ; 194(3): 353-368, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38158078

RESUMEN

Nonalcoholic steatohepatitis (NASH) is an inflammatory and fibrotic liver disease that has reached epidemic proportions and has no approved pharmacologic therapies. Research and drug development efforts are hampered by inadequate preclinical models. This research describes a three-dimensional bioprinted liver tissue model of NASH built using primary human hepatocytes and nonparenchymal liver cells (hepatic stellate cells, liver sinusoidal endothelial cells, and Kupffer cells) from either healthy or NASH donors. Three-dimensional tissues bioprinted with cells sourced from diseased patients showed a NASH phenotype, including fibrosis. More importantly, this NASH phenotype occurred without the addition of disease-inducing agents. Bioprinted tissues composed entirely of healthy cells exhibited significantly less evidence of disease. The role of individual cell types in driving the NASH phenotype was examined by producing chimeric bioprinted tissues composed of healthy cells together with the addition of one or more diseased nonparenchymal cell types. These experiments reveal a role for both hepatic stellate and liver sinusoidal endothelial cells in the disease process. This model represents a fully human system with potential to detect clinically active targets and eventually therapies.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Células Endoteliales/metabolismo , Hígado/metabolismo , Hepatocitos/metabolismo , Macrófagos del Hígado/metabolismo , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/patología
8.
Sci Transl Med ; 15(724): eabp9599, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38019934

RESUMEN

Epithelial cells are covered in carbohydrates (glycans). This glycan coat or "glycocalyx" interfaces directly with microbes, providing a protective barrier against potential pathogens. Bacterial vaginosis (BV) is a condition associated with adverse health outcomes in which bacteria reside in direct proximity to the vaginal epithelium. Some of these bacteria, including Gardnerella, produce glycosyl hydrolase enzymes. However, glycans of the human vaginal epithelial surface have not been studied in detail. Here, we elucidate key characteristics of the "normal" vaginal epithelial glycan landscape and analyze the impact of resident microbes on the surface glycocalyx. In human BV, glycocalyx staining was visibly diminished in electron micrographs compared to controls. Biochemical and mass spectrometric analysis showed that, compared to normal vaginal epithelial cells, BV cells were depleted of sialylated N- and O-glycans, with underlying galactose residues exposed on the surface. Treatment of primary epithelial cells from BV-negative women with recombinant Gardnerella sialidases generated BV-like glycan phenotypes. Exposure of cultured VK2 vaginal epithelial cells to recombinant Gardnerella sialidase led to desialylation of glycans and induction of pathways regulating cell death, differentiation, and inflammatory responses. These data provide evidence that vaginal epithelial cells exhibit an altered glycan landscape in BV and suggest that BV-associated glycosidic enzymes may lead to changes in epithelial gene transcription that promote cell turnover and regulate responses toward the resident microbiome.


Asunto(s)
Gardnerella vaginalis , Vaginosis Bacteriana , Femenino , Humanos , Gardnerella vaginalis/genética , Gardnerella vaginalis/metabolismo , Vagina , Vaginosis Bacteriana/genética , Vaginosis Bacteriana/microbiología , Bacterias/metabolismo , Polisacáridos , Neuraminidasa/genética , Neuraminidasa/metabolismo
9.
Res Sq ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37886563

RESUMEN

Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium. In this study, we replicated the results of our previous study using network propagation methods in a genome-wide association study of an independent sample of 2,039 patients from the International Consortium on Lithium Genetics (ConLiGen) study. We identified functional enrichment in focal adhesion and PI3K-Akt pathways, but we did not find an association with the ECM pathway. Our results suggest that deficits in the neuronal growth cone and PI3K-Akt signaling, but not in ECM proteins, may influence response to lithium in BD.

10.
Cancers (Basel) ; 15(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37686653

RESUMEN

HPV-associated oropharynx carcinoma (HPVOPC) tumors have a relatively low mutational burden. Elucidating the relative contributions of other tumor alterations, such as DNA methylation alterations, alternative splicing events (ASE), and copy number variation (CNV), could provide a deeper understanding of carcinogenesis drivers in this disease. We applied network propagation analysis to multiple classes of tumor alterations in a discovery cohort of 46 primary HPVOPC tumors and 25 cancer-unaffected controls and validated our findings with TCGA data. We identified significant overlap between differential gene expression networks and all alteration classes, and this association was highest for methylation and lowest for CNV. Significant overlap was seen for gene clusters of G protein-coupled receptor (GPCR) pathways. HPV16-human protein interaction analysis identified an enriched cluster defined by an immune-mediated GPCR signal, including CXCR3 cytokines CXCL9, CXCL10, and CXCL11. CXCR3 was found to be expressed in primary HPVOPC, and scRNA-seq analysis demonstrated CXCR3 ligands to be highly expressed in M2 macrophages. In vivo models demonstrated decreased tumor growth with antagonism of the CXCR3 receptor in immunodeficient but not immunocompetent mice, suggesting that the CXCR3 axis can drive tumor proliferation in an autocrine fashion, but the effect is tempered by an intact immune system. In conclusion, methylation, ASE, and SNV alterations are highly associated with network gene expression changes in HPVOPC, suggesting that ASE and methylation alterations have an important role in driving the oncogenic phenotype. Network analysis identifies GPCR networks, specifically the CXCR3 chemokine axis, as modulators of tumor-immune interactions that may have proliferative effects on primary tumors as well as a role for immunosurveillance; however, CXCR3 inhibition should be used with caution, as these agents may both inhibit and stimulate tumor growth considering the competing effects of this cytokine axis. Further investigation is needed to explore opportunities for targeted therapy in this setting.

11.
Cell Rep ; 42(8): 112873, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37527041

RESUMEN

A vexing observation in genome-wide association studies (GWASs) is that parallel analyses in different species may not identify orthologous genes. Here, we demonstrate that cross-species translation of GWASs can be greatly improved by an analysis of co-localization within molecular networks. Using body mass index (BMI) as an example, we show that the genes associated with BMI in humans lack significant agreement with those identified in rats. However, the networks interconnecting these genes show substantial overlap, highlighting common mechanisms including synaptic signaling, epigenetic modification, and hormonal regulation. Genetic perturbations within these networks cause abnormal BMI phenotypes in mice, too, supporting their broad conservation across mammals. Other mechanisms appear species specific, including carbohydrate biosynthesis (humans) and glycerolipid metabolism (rodents). Finally, network co-localization also identifies cross-species convergence for height/body length. This study advances a general paradigm for determining whether and how phenotypes measured in model species recapitulate human biology.


Asunto(s)
Índice de Masa Corporal , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Humanos , Animales , Ratas , Tamaño Corporal , Ratones , Especificidad de la Especie
12.
Mol Psychiatry ; 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36991131

RESUMEN

Lithium (Li) is one of the most effective drugs for treating bipolar disorder (BD), however, there is presently no way to predict response to guide treatment. The aim of this study is to identify functional genes and pathways that distinguish BD Li responders (LR) from BD Li non-responders (NR). An initial Pharmacogenomics of Bipolar Disorder study (PGBD) GWAS of lithium response did not provide any significant results. As a result, we then employed network-based integrative analysis of transcriptomic and genomic data. In transcriptomic study of iPSC-derived neurons, 41 significantly differentially expressed (DE) genes were identified in LR vs NR regardless of lithium exposure. In the PGBD, post-GWAS gene prioritization using the GWA-boosting (GWAB) approach identified 1119 candidate genes. Following DE-derived network propagation, there was a highly significant overlap of genes between the top 500- and top 2000-proximal gene networks and the GWAB gene list (Phypergeometric = 1.28E-09 and 4.10E-18, respectively). Functional enrichment analyses of the top 500 proximal network genes identified focal adhesion and the extracellular matrix (ECM) as the most significant functions. Our findings suggest that the difference between LR and NR was a much greater effect than that of lithium. The direct impact of dysregulation of focal adhesion on axon guidance and neuronal circuits could underpin mechanisms of response to lithium, as well as underlying BD. It also highlights the power of integrative multi-omics analysis of transcriptomic and genomic profiling to gain molecular insights into lithium response in BD.

14.
Metabolites ; 13(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36837791

RESUMEN

Drug transporters and drug-metabolizing enzymes are primarily known for their role in the absorption, distribution, metabolism, and excretion (ADME) of small molecule drugs, but they also play a key role in handling endogenous metabolites. Recent cross-tissue co-expression network analyses have revealed a "Remote Sensing and Signaling Network" of multispecific, oligo-specific, and monospecific transporters and enzymes involved in endogenous metabolism. This includes many proteins from families involved in ADME (e.g., SLC22, SLCO, ABCC, CYP, UGT). Focusing on the gut-liver-kidney axis, we identified the endogenous metabolites potentially regulated by this network of ~1000 proteins by associating SNPs in these genes with the circulating levels of thousands of small, polar, bioactive metabolites, including free fatty acids, eicosanoids, bile acids, and other signaling metabolites that act in part via G-protein coupled receptors (GPCRs), nuclear receptors, and kinases. We identified 77 genomic loci associated with 7236 unique metabolites. This included metabolites that were associated with multiple, distinct loci, indicating coordinated regulation between multiple genes (including drug transporters and drug-metabolizing enzymes) of specific metabolites. We analyzed existing pharmacogenomic data and noted SNPs implicated in endogenous metabolite handling (e.g., rs4149056 in SLCO1B1) also affecting drug ADME. The overall results support the existence of close relationships, via interactions with signaling metabolites, between drug transporters and drug-metabolizing enzymes that are part of the Remote Sensing and Signaling Network, and with GPCRs and nuclear receptors. These analyses highlight the potential for drug-metabolite interactions at the interfaces of the Remote Sensing and Signaling Network and the ADME protein network.

15.
Lancet Reg Health Am ; 19: 100449, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36844610

RESUMEN

Background: Schools are high-risk settings for SARS-CoV-2 transmission, but necessary for children's educational and social-emotional wellbeing. Previous research suggests that wastewater monitoring can detect SARS-CoV-2 infections in controlled residential settings with high levels of accuracy. However, its effective accuracy, cost, and feasibility in non-residential community settings is unknown. Methods: The objective of this study was to determine the effectiveness and accuracy of community-based passive wastewater and surface (environmental) surveillance to detect SARS-CoV-2 infection in neighborhood schools compared to weekly diagnostic (PCR) testing. We implemented an environmental surveillance system in nine elementary schools with 1700 regularly present staff and students in southern California. The system was validated from November 2020 to March 2021. Findings: In 447 data collection days across the nine sites 89 individuals tested positive for COVID-19, and SARS-CoV-2 was detected in 374 surface samples and 133 wastewater samples. Ninety-three percent of identified cases were associated with an environmental sample (95% CI: 88%-98%); 67% were associated with a positive wastewater sample (95% CI: 57%-77%), and 40% were associated with a positive surface sample (95% CI: 29%-52%). The techniques we utilized allowed for near-complete genomic sequencing of wastewater and surface samples. Interpretation: Passive environmental surveillance can detect the presence of COVID-19 cases in non-residential community school settings with a high degree of accuracy. Funding: County of San Diego, Health and Human Services Agency, National Institutes of Health, National Science Foundation, Centers for Disease Control.

16.
Nat Commun ; 14(1): 292, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653361

RESUMEN

Pancreatic cancer is characterized by extensive resistance to conventional therapies, making clinical management a challenge. Here we map the epigenetic dependencies of cancer stem cells, cells that preferentially evade therapy and drive progression, and identify SWI/SNF complex member SMARCD3 as a regulator of pancreatic cancer cells. Although SWI/SNF subunits often act as tumor suppressors, we show that SMARCD3 is amplified in cancer, enriched in pancreatic cancer stem cells and upregulated in the human disease. Diverse genetic mouse models of pancreatic cancer and stage-specific Smarcd3 deletion reveal that Smarcd3 loss preferentially impacts established tumors, improving survival especially in context of chemotherapy. Mechanistically, SMARCD3 acts with FOXA1 to control lipid and fatty acid metabolism, programs associated with therapy resistance and poor prognosis in cancer. These data identify SMARCD3 as an epigenetic modulator responsible for establishing the metabolic landscape in aggressive pancreatic cancer cells and a potential target for new therapies.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Epigénesis Genética , Neoplasias Pancreáticas
17.
Nat Protoc ; 18(6): 1745-1759, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36653526

RESUMEN

A longstanding goal of biomedicine is to understand how alterations in molecular and cellular networks give rise to the spectrum of human diseases. For diseases with shared etiology, understanding the common causes allows for improved diagnosis of each disease, development of new therapies and more comprehensive identification of disease genes. Accordingly, this protocol describes how to evaluate the extent to which two diseases, each characterized by a set of mapped genes, are colocalized in a reference gene interaction network. This procedure uses network propagation to measure the network 'distance' between gene sets. For colocalized diseases, the network can be further analyzed to extract common gene communities at progressive granularities. In particular, we show how to: (1) obtain input gene sets and a reference gene interaction network; (2) identify common subnetworks of genes that encompass or are in close proximity to all gene sets; (3) use multiscale community detection to identify systems and pathways represented by each common subnetwork to generate a network colocalized systems map; (4) validate identified genes and systems using a mouse variant database; and (5) visualize and further investigate select genes, interactions and systems for relevance to phenotype(s) of interest. We demonstrate the utility of this approach by identifying shared biological mechanisms underlying autism and congenital heart disease. However, this protocol is general and can be applied to any gene sets attributed to diseases or other phenotypes with suspected joint association. A typical NetColoc run takes less than an hour. Software and documentation are available at https://github.com/ucsd-ccbb/NetColoc .


Asunto(s)
Redes Reguladoras de Genes , Programas Informáticos , Humanos , Bases de Datos Factuales , Biología Computacional/métodos
18.
medRxiv ; 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34704096

RESUMEN

Background: Schools are high-risk settings for SARS-CoV-2 transmission, but necessary for children's educational and social-emotional wellbeing. Previous research suggests that wastewater monitoring can detect SARS-CoV-2 infections in controlled residential settings with high levels of accuracy. However, its effective accuracy, cost, and feasibility in non-residential community settings is unknown. Methods: The objective of this study was to determine the effectiveness and accuracy of community-based passive wastewater and surface (environmental) surveillance to detect SARS-CoV-2 infection in neighborhood schools compared to weekly diagnostic (PCR) testing. We implemented an environmental surveillance system in nine elementary schools with 1700 regularly present staff and students in southern California. The system was validated from November 2020 - March 2021. Findings: In 447 data collection days across the nine sites 89 individuals tested positive for COVID-19, and SARS-CoV-2 was detected in 374 surface samples and 133 wastewater samples. Ninety-three percent of identified cases were associated with an environmental sample (95% CI: 88% - 98%); 67% were associated with a positive wastewater sample (95% CI: 57% - 77%), and 40% were associated with a positive surface sample (95% CI: 29% - 52%). The techniques we utilized allowed for near-complete genomic sequencing of wastewater and surface samples. Interpretation: Passive environmental surveillance can detect the presence of COVID-19 cases in non-residential community school settings with a high degree of accuracy. Funding: County of San Diego, Health and Human Services Agency, National Institutes of Health, National Science Foundation, Centers for Disease Control.

19.
Hepatology ; 77(1): 197-212, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35560106

RESUMEN

BACKGROUND AND AIMS: NAFLD is the most common chronic liver disease in children. Large pediatric studies identifying single nucleotide polymorphisms (SNPs) associated with risk and histologic severity of NAFLD are limited. Study aims included investigating SNPs associated with risk for NAFLD using family trios and association of candidate alleles with histologic severity. APPROACH AND RESULTS: Children with biopsy-confirmed NAFLD were enrolled from the NASH Clinical Research Network. The Expert Pathology Committee reviewed liver histology. Genotyping was conducted with allele-specific primers for 60 candidate SNPs. Parents were enrolled for trio analysis. To assess risk for NAFLD, the transmission disequilibrium test was conducted in trios. Among cases, regression analysis assessed associations with histologic severity. A total of 822 children with NAFLD had mean age 13.2 years (SD 2.7) and mean ALT 101 U/L (SD 90). PNPLA3 (rs738409) demonstrated the strongest risk ( p = 2.24 × 10 -14 ) for NAFLD. Among children with NAFLD, stratifying by PNPLA3 s738409 genotype, the variant genotype associated with steatosis ( p = 0.005), lobular ( p = 0.03) and portal inflammation ( p = 0.002). Steatosis grade associated with TM6SF2 ( p = 0.0009), GCKR ( p = 0.0032), PNPLA3 rs738409 ( p = 0.0053), and MTTP ( p = 0.0051). Fibrosis stage associated with PARVB rs6006473 ( p = 0.0001), NR1I2 ( p = 0.0021), ADIPOR2 ( p = 0.0038), and OXTR ( p = 0.0065). PNPLA3 rs738409 ( p = 0.0002) associated with borderline zone 1 NASH. CONCLUSIONS: This study demonstrated disease-associated SNPs in children with NAFLD. In particular, rs6006473 was highly associated with severity of fibrosis. These hypothesis-generating results support future mechanistic studies of development of adverse outcomes such as fibrosis and generation of therapeutic targets for NAFLD in children.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Niño , Adolescente , Enfermedad del Hígado Graso no Alcohólico/patología , Hígado/patología , Genotipo , Fibrosis , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad
20.
Nature ; 610(7931): 366-372, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36198801

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly desmoplastic, aggressive cancer that frequently progresses and spreads by metastasis to the liver1. Cancer-associated fibroblasts, the extracellular matrix and type I collagen (Col I) support2,3 or restrain the progression of PDAC and may impede blood supply and nutrient availability4. The dichotomous role of the stroma in PDAC, and the mechanisms through which it influences patient survival and enables desmoplastic cancers to escape nutrient limitation, remain poorly understood. Here we show that matrix-metalloprotease-cleaved Col I (cCol I) and intact Col I (iCol I) exert opposing effects on PDAC bioenergetics, macropinocytosis, tumour growth and metastasis. Whereas cCol I activates discoidin domain receptor 1 (DDR1)-NF-κB-p62-NRF2 signalling to promote the growth of PDAC, iCol I triggers the degradation of DDR1 and restrains the growth of PDAC. Patients whose tumours are enriched for iCol I and express low levels of DDR1 and NRF2 have improved median survival compared to those whose tumours have high levels of cCol I, DDR1 and NRF2. Inhibition of the DDR1-stimulated expression of NF-κB or mitochondrial biogenesis blocks tumorigenesis in wild-type mice, but not in mice that express MMP-resistant Col I. The diverse effects of the tumour stroma on the growth and metastasis of PDAC and on the survival of patients are mediated through the Col I-DDR1-NF-κB-NRF2 mitochondrial biogenesis pathway, and targeting components of this pathway could provide therapeutic opportunities.


Asunto(s)
Carcinoma Ductal Pancreático , Colágeno Tipo I , Receptor con Dominio Discoidina 1 , Transducción de Señal , Animales , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Colágeno Tipo I/metabolismo , Receptor con Dominio Discoidina 1/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Ratones , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...