Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
3.
J Vis Exp ; (76)2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23852264

RESUMEN

Arginine-vasopressin (AVP) facilitates water reabsorption by renal collecting duct principal cells and thereby fine-tunes body water homeostasis. AVP binds to vasopressin V2 receptors (V2R) on the surface of the cells and thereby induces synthesis of cAMP. This stimulates cellular signaling processes leading to changes in the phosphorylation of the water channel aquaporin-2 (AQP2). Protein kinase A phoshorylates AQP2 and thereby triggers the translocation of AQP2 from intracellular vesicles into the plasma membrane facilitating water reabsorption from primary urine. Aberrations of AVP release from the pituitary or AVP-activated signaling in principal cells can cause central or nephrogenic diabetes insipidus, respectively; an elevated blood plasma AVP level is associated with cardiovascular diseases such as chronic heart failure and the syndrome of inappropriate antidiuretic hormone secretion. Here, we present a protocol for cultivation of primary rat inner medullary collecting duct (IMCD) cells, which express V2R and AQP2 endogenously. The cells are suitable for elucidating molecular mechanisms underlying the control of AQP2 and thus to discover novel drug targets for the treatment of diseases associated with dysregulation of AVP-mediated water reabsorption. IMCD cells are obtained from rat renal inner medullae and are used for experiments six to eight days after seeding. IMCD cells can be cultured in regular cell culture dishes, flasks and micro-titer plates of different formats, the procedure only requires a few hours, and is appropriate for standard cell culture laboratories.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Túbulos Renales Colectores/citología , Animales , Acuaporina 2/biosíntesis , Túbulos Renales Colectores/metabolismo , Ratas , Receptores de Vasopresinas/biosíntesis
4.
J Am Soc Nephrol ; 24(5): 744-58, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23559583

RESUMEN

In the principal cells of the renal collecting duct, arginine vasopressin (AVP) stimulates the synthesis of cAMP, leading to signaling events that culminate in the phosphorylation of aquaporin-2 water channels and their redistribution from intracellular domains to the plasma membrane via vesicular trafficking. The molecular mechanisms that control aquaporin-2 trafficking and the consequent water reabsorption, however, are not completely understood. Here, we used a cell-based assay and automated immunofluorescence microscopy to screen 17,700 small molecules for inhibitors of the cAMP-dependent redistribution of aquaporin-2. This approach identified 17 inhibitors, including 4-acetyldiphyllin, a selective blocker of vacuolar H(+)-ATPase that increases the pH of intracellular vesicles and causes accumulation of aquaporin-2 in the Golgi compartment. Although 4-acetyldiphyllin did not inhibit forskolin-induced increases in cAMP formation and downstream activation of protein kinase A (PKA), it did prevent cAMP/PKA-dependent phosphorylation at serine 256 of aquaporin-2, which triggers the redistribution to the plasma membrane. It did not, however, prevent cAMP-induced changes to the phosphorylation status at serines 261 or 269. Last, we identified the fungicide fluconazole as an inhibitor of cAMP-mediated redistribution of aquaporin-2, but its target in this pathway remains unknown. In conclusion, our screening approach provides a method to begin dissecting molecular mechanisms underlying AVP-mediated water reabsorption, evidenced by our identification of 4-acetyldiphyllin as a modulator of aquaporin-2 trafficking.


Asunto(s)
Acuaporina 2/metabolismo , Benzodioxoles/farmacología , Benzofuranos/farmacología , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , Animales , Células Cultivadas , Colforsina/farmacología , AMP Cíclico/fisiología , Fluconazol/farmacología , Aparato de Golgi/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Microscopía Fluorescente , Fosforilación , Transporte de Proteínas/efectos de los fármacos , Ratas
5.
Eur J Cell Biol ; 91(4): 294-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21543132

RESUMEN

About 5-10% of the G protein-coupled receptors (GPCRs) contain N-terminal signal peptides that are cleaved off by the signal peptidases of the endoplasmic reticulum (ER) during the translocon-mediated receptor insertion into the ER membrane. The reason as to why only a subset of the GPCRs requires these additional signal peptides was addressed in the past decade only by a limited number of studies. Recent progress suggests that signal peptides of GPCRs do not only serve the classical ER targeting and translocon gating functions as described for the signal peptides of secretory proteins. In the case of GPCRs, uncleaved pseudo signal peptides may regulate receptor expression at the plasma membrane and may also influence G protein coupling. Moreover, signal peptides of GPCRs seem to match functionally with sequences of the mature N tails. In this review, we summarize the current knowledge about cleavable signal peptides of GPCRs and address the question whether these sequences may be future drug targets in pharmacology.


Asunto(s)
Señales de Clasificación de Proteína/fisiología , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/fisiología , Señales de Clasificación de Proteína/genética , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Receptores Acoplados a Proteínas G/fisiología , Transducción de Señal/genética
6.
J Biol Chem ; 286(41): 35588-35600, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-21808059

RESUMEN

The specific inhibition of the biosynthesis of target proteins is a relatively novel strategy in pharmacology and is based mainly on antisense approaches (e.g. antisense oligonucleotides or RNA interference). Recently, a novel class of substances was described acting at a later step of protein biosynthesis. The cyclic heptadepsipeptides CAM741 and cotransin were shown to inhibit selectively the biosynthesis of a small subset of secretory proteins by preventing stable insertion of the nascent chains into the Sec61 translocon complex at the endoplasmic reticulum membrane (Besemer, J., Harant, H., Wang, S., Oberhauser, B., Marquardt, K., Foster, C. A., Schreiner, E. P., de Vries, J. E., Dascher-Nadel, C., and Lindley, I. J. (2005) Nature 436, 290-293; Garrison, J. L., Kunkel, E. J., Hegde, R. S., and Taunton, J. (2005) Nature 436, 285-289). These peptides act in a signal sequence-discriminatory manner, which explains their selectivity. Here, we have analyzed the cotransin sensitivity of various G protein-coupled receptors in transfected HEK 293 cells. We show that the biosynthesis of the human endothelin B receptor (ET(B)R) is highly sensitive to cotransin, in contrast to that of the other G protein-coupled receptors analyzed. Using a novel biosynthesis assay based on fusions with the photoconvertible Kaede protein, we show that the IC(50) value of cotransin action on ET(B)R biosynthesis is 5.4 µm and that ET(B)R signaling could be completely blocked by treating cells with 30 µm cotransin. Taken together, our data add an integral membrane protein, namely the ET(B)R, to the small group of cotransin-sensitive proteins.


Asunto(s)
Péptidos Cíclicos/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Receptor de Endotelina B/biosíntesis , Células HEK293 , Humanos , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Biosíntesis de Proteínas/genética , Receptor de Endotelina B/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética
7.
J Biol Chem ; 286(11): 9079-96, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21177871

RESUMEN

A-kinase anchoring proteins (AKAPs) tether protein kinase A (PKA) and other signaling proteins to defined intracellular sites, thereby establishing compartmentalized cAMP signaling. AKAP-PKA interactions play key roles in various cellular processes, including the regulation of cardiac myocyte contractility. We discovered small molecules, 3,3'-diamino-4,4'-dihydroxydiphenylmethane (FMP-API-1) and its derivatives, which inhibit AKAP-PKA interactions in vitro and in cultured cardiac myocytes. The molecules bind to an allosteric site of regulatory subunits of PKA identifying a hitherto unrecognized region that controls AKAP-PKA interactions. FMP-API-1 also activates PKA. The net effect of FMP-API-1 is a selective interference with compartmentalized cAMP signaling. In cardiac myocytes, FMP-API-1 reveals a novel mechanism involved in terminating ß-adrenoreceptor-induced cAMP synthesis. In addition, FMP-API-1 leads to an increase in contractility of cultured rat cardiac myocytes and intact hearts. Thus, FMP-API-1 represents not only a novel means to study compartmentalized cAMP/PKA signaling but, due to its effects on cardiac myocytes and intact hearts, provides the basis for a new concept in the treatment of chronic heart failure.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Miocitos Cardíacos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Sistemas de Mensajero Secundario/fisiología , Proteínas de Anclaje a la Quinasa A/genética , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/genética , Animales , Enfermedad Crónica , AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Masculino , Contracción Miocárdica/efectos de los fármacos , Ratas , Ratas Endogámicas WKY , Sistemas de Mensajero Secundario/efectos de los fármacos
8.
J Am Soc Nephrol ; 21(10): 1645-56, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20724536

RESUMEN

Arginine-vasopressin (AVP) modulates the water channel aquaporin-2 (AQP2) in the renal collecting duct to maintain homeostasis of body water. AVP binds to vasopressin V2 receptors (V2R), increasing cAMP, which promotes the redistribution of AQP2 from intracellular vesicles into the plasma membrane. cAMP also increases AQP2 transcription, but whether altered degradation also modulates AQP2 protein levels is not well understood. Here, elevation of cAMP increased AQP2 protein levels within 30 minutes in primary inner medullary collecting duct (IMCD) cells, in human embryonic kidney (HEK) 293 cells ectopically expressing AQP2, and in mouse kidneys. Accelerated transcription or translation did not explain this increase in AQP2 abundance. In IMCD cells, cAMP inhibited p38-mitogen-activated protein kinase (p38-MAPK) via activation of protein kinase A (PKA). Inhibition of p38-MAPK associated with decreased phosphorylation (serine 261) and polyubiquitination of AQP2, preventing proteasomal degradation. Our results demonstrate that AVP enhances AQP2 protein abundance by altering its proteasomal degradation through a PKA- and p38-MAPK-dependent pathway.


Asunto(s)
Acuaporina 2/metabolismo , Arginina Vasopresina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Médula Renal/metabolismo , Túbulos Renales Colectores/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Línea Celular , Colforsina , AMP Cíclico/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Biosíntesis de Proteínas , Ratas , Transcripción Genética
9.
Int Rev Cell Mol Biol ; 283: 235-330, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20801421

RESUMEN

The second messenger cyclic adenosine monophosphate (cAMP), which is produced by adenylyl cyclases following stimulation of G-protein-coupled receptors, exerts its effect mainly through the cAMP-dependent serine/threonine protein kinase A (PKA). Due to the ubiquitous nature of the cAMP/PKA system, PKA signaling pathways underlie strict spatial and temporal control to achieve specificity. A-kinase anchoring proteins (AKAPs) bind to the regulatory subunit dimer of the tetrameric PKA holoenzyme and thereby target PKA to defined cellular compartments in the vicinity of its substrates. AKAPs promote the termination of cAMP signals by recruiting phosphodiesterases and protein phosphatases, and the integration of signaling pathways by binding additional signaling proteins. AKAPs are a heterogeneous family of proteins that only display similarity within their PKA-binding domains, amphipathic helixes docking into a hydrophobic groove formed by the PKA regulatory subunit dimer. This review summarizes the current state of information on compartmentalized cAMP/PKA signaling with a major focus on structural aspects, evolution, diversity, and (patho)physiological functions of AKAPs and intends to outline newly emerging directions of the field, such as the elucidation of AKAP mutations and alterations of AKAP expression in human diseases, and the validation of AKAP-dependent protein-protein interactions as new drug targets. In addition, alternative PKA anchoring mechanisms employed by noncanonical AKAPs and PKA catalytic subunit-interacting proteins are illustrated.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Animales , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/química , Enfermedad , Humanos , Transducción de Señal
10.
J Biol Chem ; 285(8): 5507-21, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20007971

RESUMEN

A-kinase anchoring proteins (AKAPs) include a family of scaffolding proteins that target protein kinase A (PKA) and other signaling proteins to cellular compartments and thereby confine the activities of the associated proteins to distinct regions within cells. AKAPs bind PKA directly. The interaction is mediated by the dimerization and docking domain of regulatory subunits of PKA and the PKA-binding domain of AKAPs. Analysis of the interactions between the dimerization and docking domain and various PKA-binding domains yielded a generalized motif allowing the identification of AKAPs. Our bioinformatics and peptide array screening approaches based on this signature motif identified GSKIP (glycogen synthase kinase 3beta interaction protein) as an AKAP. GSKIP directly interacts with PKA and GSK3beta (glycogen synthase kinase 3beta). It is widely expressed and facilitates phosphorylation and thus inactivation of GSK3beta by PKA. GSKIP contains the evolutionarily conserved domain of unknown function 727. We show here that this domain of GSKIP and its vertebrate orthologues binds both PKA and GSK3beta and thereby provides a mechanism for the integration of PKA and GSK3beta signaling pathways.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Transducción de Señal/fisiología , Proteínas de Anclaje a la Quinasa A/genética , Secuencias de Aminoácidos/fisiología , Línea Celular Tumoral , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Humanos , Unión Proteica/fisiología , Multimerización de Proteína/fisiología , Estructura Terciaria de Proteína/fisiología
11.
J Pept Sci ; 15(7): 479-91, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19466696

RESUMEN

The molecular basis for recognition of peptide ligands endothelin-1, -2 and -3 in endothelin receptors is poorly understood. Especially the origin of ligand selectivity for ET(A) or ET(B) is not clearly resolved. We derived sequence-structure-function relationships of peptides and receptors from mutational data and homology modeling. Our major findings are the dissection of peptide ligands into four epitopes and the delineation of four complementary structural portions on receptor side explaining ligand recognition in both endothelin receptor subtypes. In addition, structural determinants for ligand selectivity could be described. As a result, we could improve the selectivity of BQ3020 about 10-fold by a single amino acid substitution, validating our hypothesis for ligand selectivity caused by different entrances to the receptors' transmembrane binding sites. A narrow tunnel shape in ET(A) is restrictive for a selected group of peptide ligands' N-termini, whereas a broad funnel-shaped entrance in ET(B) accepts a variety of different shapes and properties of ligands.


Asunto(s)
Péptidos/química , Receptor de Endotelina A/agonistas , Receptor de Endotelina A/química , Receptor de Endotelina B/agonistas , Receptor de Endotelina B/química , Animales , Sitios de Unión , Bovinos , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Unión Proteica , Estructura Secundaria de Proteína , Relación Estructura-Actividad
12.
Mol Pharmacol ; 75(4): 801-11, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19136571

RESUMEN

The heptahelical G protein-coupled receptors (GPCRs) must reach their correct subcellular location to exert their function. Receptor domains relevant for receptor trafficking include signal sequences mediating receptor integration into the membrane of the endoplasmic reticulum (ER) and anterograde or retrograde transport signals promoting receptor sorting into the vesicles of the secretory pathway. In addition, receptors must be correctly folded to pass the quality control system of the early secretory pathway. Taking the endothelin B receptor as a model, we describe a new type of a transport-relevant GPCR domain. Deletion of this domain (residues Glu(28) to Trp(54)) leads to a fully functional receptor protein that is expressed at a lower level than the wild-type receptor. Subcellular localization experiments and glycosylation state analyses demonstrate that the mutant receptor is neither misfolded, retained intracellularly, nor misrouted. Fluorescence recovery after photobleaching analyses demonstrate that constitutive internalization is also not affected. By using an in vitro prion protein targeting assay, we show that this domain is necessary for efficient translocon gating at the ER membrane during early receptor biogenesis. Taken together, we identified a novel transport-relevant domain in the GPCR protein family. Our data may also be relevant for other GPCRs and unrelated integral membrane proteins.


Asunto(s)
Secuencia de Aminoácidos , Proteínas de Unión al Calcio/química , Retículo Endoplásmico/fisiología , Glicoproteínas de Membrana/química , Señales de Clasificación de Proteína/fisiología , Receptor de Endotelina B/química , Receptores Citoplasmáticos y Nucleares/química , Receptores de Péptidos/química , Secuencia de Aminoácidos/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/fisiología , Línea Celular , Retículo Endoplásmico/genética , Humanos , Activación del Canal Iónico/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiología , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Unión Proteica/genética , Señales de Clasificación de Proteína/genética , Receptor de Endotelina B/genética , Receptor de Endotelina B/fisiología , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/fisiología , Receptores de Péptidos/genética , Receptores de Péptidos/fisiología , Canales de Translocación SEC
13.
Traffic ; 10(1): 2-15, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18939954

RESUMEN

The heptahelical G protein-coupled receptors (GPCRs) are internalized following agonist treatment and either recycle rapidly to the plasma membrane or enter the lysosomal degradation pathway. Many conventional GPCR recycling assays suffer from the fact that receptors arriving from the secretory pathway may interfere with recycling receptors. In this study, we introduce a new methodology to study post-endocytotic GPCR trafficking using fusions with the recently cloned Kaede protein. In contrast to the widely used green fluorescent protein, the fluorescence of Kaede can be converted from green to red using ultraviolet irradiation. Our methodology allows to study recycling of GPCRs microscopically in real-time bypassing problems with secretory pathway receptors. Initially, receptors are internalized using an agonist. Fluorescence signals in endosomes are switched, and trafficking of the receptors to the plasma membrane can be easily visualized by monitoring their new fluorescence. Using this methodology, we show that the corticotropin-releasing factor receptor type 1 belongs to the family of recycling GPCRs. Moreover, we demonstrate by fluorescence correlation spectroscopy that Kaede does not oligomerize when fused to membrane proteins, representing an additional advantage of this technique. The Kaede technology may be a powerful tool to study membrane protein trafficking in general.


Asunto(s)
Proteínas Luminiscentes/análisis , Microscopía Fluorescente/métodos , Receptores Acoplados a Proteínas G/análisis , Receptores Acoplados a Proteínas G/metabolismo , Animales , Línea Celular , Humanos , Ligandos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Fotoquímica , Ratas , Receptores Acoplados a Proteínas G/genética , Factores de Tiempo
14.
Handb Exp Pharmacol ; (190): 133-57, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19096775

RESUMEN

Principal cells lining renal collecting ducts control the fine-tuning of body water homeostasis by regulating water reabsorption through the water channels aquaporin-2 (AQP2), aquaporin-3 (AQP3), and aquaporin-4 (AQP4). While the localization of AQP2 is subject to regulation by arginine-vasopressin (AVP), AQP3 and AQP4 are constitutively expressed in the basolateral plasma membrane. AVP adjusts the amount of AQP2 in the plasma membrane by triggering its redistribution from intracellular vesicles into the plasma membrane. This permits water entry into the cells and water exit through AQP3 and AQP4. The translocation of AQP2 is initiated by an increase in cAMP following V2R activation through AVP. The AVP-induced rise in cAMP activates protein kinase A (PKA), which in turn phosphorylates AQP2, and thereby triggers the redistribution of AQP2. Several proteins participating in the control of cAMP-dependent AQP2 trafficking have been identified; for example, A kinase anchoring proteins (AKAPs) tethering PKA to cellular compartments; phosphodiesterases (PDEs) regulating the local cAMP level; cytoskeletal components such as F-actin and microtubules; small GTPases of the Rho family controlling cytoskeletal dynamics; motor proteins transporting AQP2-bearing vesicles to and from the plasma membrane for exocytic insertion and endocytic retrieval; SNAREs inducing membrane fusions, hsc70, a chaperone, important for endocytic retrieval. In addition, cAMP-independent mechanisms of translocation mainly involving the F-actin cytoskeleton have been uncovered. Defects of AQP2 trafficking cause diseases such as nephrogenic diabetes insipidus (NDI), a disorder characterized by a massive loss of hypoosmotic urine.This review summarizes recent data elucidating molecular mechanisms underlying the trafficking of AQP2. In particular, we focus on proteins involved in the regulation of trafficking, and physiological and pathophysiological stimuli determining the cellular localization of AQP2. The identification of proteins and protein-protein interactions may lead to the development of drugs targeting AQP2 trafficking. Such drugs may be suitable for the treatment of diseases associated with dysregulation of body water homeostasis, including NDI or cardiovascular diseases (e.g., chronic heart failure) where the AVP level is elevated, inducing excessive water retention.


Asunto(s)
Acuaporina 2/metabolismo , Membrana Celular/metabolismo , Túbulos Renales Colectores/metabolismo , Equilibrio Hidroelectrolítico , Agua/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Arginina Vasopresina/metabolismo , Calcio/metabolismo , Compartimento Celular , AMP Cíclico/metabolismo , Citoesqueleto/metabolismo , Diabetes Insípida Nefrogénica/metabolismo , Diabetes Insípida Nefrogénica/fisiopatología , Endocitosis , Homeostasis , Humanos , Túbulos Renales Colectores/enzimología , Hidrolasas Diéster Fosfóricas/metabolismo , Fosforilación , Transporte de Proteínas , Transducción de Señal
16.
Mol Pharmacol ; 73(3): 697-708, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18048502

RESUMEN

The endoplasmic reticulum-associated degradation (ERAD), the main quality control pathway of the cell, is crucial for the elimination of unfolded or misfolded proteins. Several diseases are associated with the retention of misfolded proteins in the early secretory pathway. Among them is X-linked nephrogenic diabetes insipidus, caused by mutations in the gene encoding the V2 vasopressin receptor (V2R). We studied the degradation pathways of three intracellularly retained V2R mutants with different misfolded domains in human embryonic kidney 293 cells. At steady state, the wild-type V2R and the complex-glycosylated mutant G201D were partially located in lysosomes, whereas core-glycosylated mutants L62P and V226E were excluded from this compartment. In pulse-chase experiments, proteasomal inhibition stabilized the nonglycosylated and core-glycosylated forms of all studied receptors. In addition, all mutants and the wild-type receptor were found to be polyubiquitinylated. Nonglycosylated and core-glycosylated receptor forms were located in cytosolic and membrane fractions, respectively, confirming the deglycosylation and retrotranslocation of ERAD substrates to the cytosol. Distinct Derlin-1-dependent and -independent ERAD pathways have been proposed for proteins with different misfolded domains (cytosolic, extracellular, and membrane) in yeast. Here, we show for the first time that V2R mutants with different misfolded domains are able to coprecipitate the ERAD components p97/valosin-containing protein, Derlin-1 and the 26S proteasome regulatory subunit 7. Our results demonstrate the presence of a Derlin-1-mediated ERAD pathway degrading wild-type and disease-causing V2R mutants with different misfolded domains in a mammalian system.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Vasopresinas/química , Receptores de Vasopresinas/metabolismo , Adenilil Ciclasas/análisis , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Secuencia de Aminoácidos , Arginina Vasopresina/farmacología , Línea Celular , Cloroquina/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Riñón/citología , Lisosomas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Plásmidos , Estructura Terciaria de Proteína , Receptores de Vasopresinas/genética , Fracciones Subcelulares/metabolismo , Transfección , Ubiquitinación , Proteína que Contiene Valosina
17.
Cell Signal ; 20(4): 590-601, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18061403

RESUMEN

Cyclic adenosine monophosphate (cAMP) is a central second messenger controlling a plethora of vital functions. Studies of cAMP dynamics in living cells have revealed markedly inhomogeneous concentrations of the second messenger in different compartments. Moreover, cAMP effectors such as cAMP-dependent protein kinase (PKA) and cAMP-activated GTP-exchange factors (Epacs) are tethered to specific cellular sites. Both the tailoring of cAMP concentrations, and the activities of cAMP-dependent signalling systems at specific cellular locations are prerequisites for most, if not all, cAMP-dependent processes. This review focuses on the role of compartmentalized cAMP signalling in exocytic processes in non-neuronal cells. Particularly, the insertion of aquaporin-2 into the plasma membrane of renal principal cells as an example for a cAMP-dependent exocytic process in a non-secretory cell type, renin secretion from juxtaglomerular cells as a cAMP-triggered exocytosis from an endocrine cell, insulin release from pancreatic beta-cells as a Ca2+-mediated and cAMP-potentiated exocytic processes in an endocrine cell, and cAMP- or Ca2+ -triggered H+ secretion from gastric parietal cells as an exocytic process in an exocrine cell are discussed. The selected examples of cAMP-regulated exocytic pathways are reviewed with regard to key proteins involved: adenylyl cyclases, phosphodiesterases, PKA, A kinase anchoring proteins (AKAPs) and Epacs.


Asunto(s)
Compartimento Celular , AMP Cíclico/metabolismo , Exocitosis , Sistemas de Mensajero Secundario , Animales , Acuaporina 2/metabolismo , Calcio/metabolismo , Ácido Gástrico/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Aparato Yuxtaglomerular/citología , Aparato Yuxtaglomerular/metabolismo , Túbulos Renales/citología , Túbulos Renales/metabolismo , Biología Molecular , Células Parietales Gástricas/metabolismo , Renina/metabolismo
18.
EMBO Rep ; 8(11): 1061-7, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17901878

RESUMEN

The beta-adrenergic receptor/cyclic AMP/protein kinase A (PKA) signalling pathway regulates heart rate and contractility. Here, we identified a supramolecular complex consisting of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2), its negative regulator phospholamban (PLN), the A-kinase anchoring protein AKAP18delta and PKA. We show that AKAP18delta acts as a scaffold that coordinates PKA phosphorylation of PLN and the adrenergic effect on Ca(2+) re-uptake. Inhibition of the compartmentalization of this cAMP signalling complex by specific molecular disruptors interferes with the phosphorylation of PLN. This prevents the subsequent release of PLN from SERCA2, thereby affecting the Ca(2+) re-uptake into the sarcoplasmic reticulum induced by adrenergic stimuli.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de la Membrana/metabolismo , Miocitos Cardíacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Retículo Sarcoplasmático/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/genética , Proteínas Portadoras/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Complejos Multiproteicos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Ratas , Retículo Sarcoplasmático/ultraestructura , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Alineación de Secuencia
19.
Am J Physiol Cell Physiol ; 293(3): C1129-38, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17626240

RESUMEN

Water reabsorption in the renal collecting duct is regulated by arginine vasopressin (AVP). AVP induces the insertion of the water channel aquaporin-2 (AQP2) into the plasma membrane of principal cells, thereby increasing the osmotic water permeability. The redistribution of AQP2 to the plasma membrane is a cAMP-dependent process and thus a paradigm for cAMP-controlled exocytic processes. Using primary cultured rat inner medullary collecting duct cells, we show that the redistribution of AQP2 to the plasma membrane is accompanied by the reorganization of microtubules and the redistribution of the small GTPase Rab11. In resting cells, AQP2 is colocalized with Rab11 perinuclearly. AVP induced the redistribution of AQP2 to the plasma membrane and of Rab11 to the cell periphery. The redistribution of both proteins was increased when microtubules were depolymerized by nocodazole. In addition, the depolymerization of microtubules prevented the perinuclear positioning of AQP2 and Rab11 in resting cells, which was restored if nocodazole was washed out and microtubules repolymerized. After internalization of AQP2, induced by removal of AVP, forskolin triggered the AQP2 redistribution to the plasma membrane even if microtubules were depolymerized and without the previous positioning of AQP2 in the perinuclear recycling compartment. Collectively, the data indicate that microtubule-dependent transport of AQP2 is predominantly responsible for trafficking and localization of AQP2 inside the cell after its internalization but not for the exocytic transport of the water channel. We also demonstrate that cAMP-signaling regulates the localization of Rab11-positive recycling endosomes in renal principal cells.


Asunto(s)
Acuaporina 2/metabolismo , Endocitosis/fisiología , Túbulos Renales Colectores/citología , Microtúbulos/metabolismo , Animales , Antineoplásicos/farmacología , Membrana Celular/metabolismo , Núcleo Celular , Células Cultivadas , AMP Cíclico/metabolismo , Dineínas/metabolismo , Exocitosis/fisiología , Aparato de Golgi/metabolismo , Microtúbulos/efectos de los fármacos , Nocodazol/farmacología , Ratas , Ratas Wistar , Proteínas de Unión al GTP rab/metabolismo
20.
J Biol Chem ; 282(28): 20676-85, 2007 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-17491025

RESUMEN

Mutant membrane proteins are frequently retained in the early secretory pathway by a quality control system, thereby causing disease. An example are mutants of the vasopressin V(2) receptor (V(2)R) leading to nephrogenic diabetes insipidus. Transport-defective V(2)Rs fall into two classes: those retained exclusively in the endoplasmic reticulum (ER) and those reaching post-ER compartments such as the ER/Golgi intermediate compartment. Although numerous chemical or pharmacological chaperones that rescue the transport of ER-retained membrane proteins are known, substances acting specifically in post-ER compartments have not been described as yet. Using the L62P (ER-retained) and Y205C (reaching post-ER compartments) mutants of the V(2)R as a model, we show here that the cell-penetrating peptide penetratin and its synthetic analog KLAL rescue the transport of the Y205C mutant. In contrast, the location of the L62P mutant is not influenced by either peptide because the peptides are unable to enter the ER. We also show data indicating that the peptide-mediated transport rescue is associated with an increase in cytosolic Ca(2+) concentrations. Thus, we describe a new class of substances influencing protein transport specifically in post-ER compartments.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Proteínas Portadoras/farmacología , Diabetes Insípida Nefrogénica/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Receptores de Vasopresinas/metabolismo , Sustitución de Aminoácidos , Calcio/metabolismo , Señalización del Calcio/genética , Proteínas Portadoras/uso terapéutico , Línea Celular , Péptidos de Penetración Celular , Diabetes Insípida Nefrogénica/tratamiento farmacológico , Diabetes Insípida Nefrogénica/genética , Diabetes Insípida Nefrogénica/patología , Retículo Endoplásmico/genética , Aparato de Golgi/genética , Humanos , Chaperonas Moleculares/metabolismo , Mutación Missense , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Receptores de Vasopresinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...