Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(39): eadp0024, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39331717

RESUMEN

Climate-sensitive northern cryosphere inland waters emit greenhouse gases (GHGs) into the atmosphere, yet their total emissions remain poorly constrained. We present a data-driven synthesis of GHG emissions from northern cryosphere inland waters considering water body types, cryosphere zones, and seasonality. We find that annual GHG emissions are dominated by carbon dioxide ([Formula: see text] teragrams of CO2; [Formula: see text]) and methane ([Formula: see text] teragrams of CH4), while the nitrous oxide emission ([Formula: see text] gigagrams of N2O) is minor. The annual CO2-equivalent (CO2e) GHG emissions from northern cryosphere inland waters total [Formula: see text] or [Formula: see text] petagrams of CO2e using the 100- or 20-year global warming potentials, respectively. Rivers emit 64% more CO2e GHGs than lakes, despite having only one-fifth of their surface area. The continuous permafrost zone contributed half of the inland water GHG emissions. Annual CO2e emissions from northern cryosphere inland waters exceed the region's terrestrial net ecosystem exchange, highlighting the important role of inland waters in the cryospheric land-aquatic continuum under a warming climate.

2.
Nat Commun ; 15(1): 3967, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730255

RESUMEN

Estuaries play an important role in connecting the global carbon cycle across the land-to-ocean continuum, but little is known about Australia's contribution to global CO2 emissions. Here we present an Australia-wide assessment, based on CO2 concentrations for 47 estuaries upscaled to 971 assessed Australian estuaries. We estimate total mean (±SE) estuary CO2 emissions of 8.67 ± 0.54 Tg CO2-C yr-1, with tidal systems, lagoons, and small deltas contributing 94.4%, 3.1%, and 2.5%, respectively. Although higher disturbance increased water-air CO2 fluxes, its effect on total Australian estuarine CO2 emissions was small due to the large surface areas of low and moderately disturbed tidal systems. Mean water-air CO2 fluxes from Australian small deltas and tidal systems were higher than from global estuaries because of the dominance of macrotidal subtropical and tropical systems in Australia, which have higher emissions due to lateral inputs. We suggest that global estuarine CO2 emissions should be upscaled based on geomorphology, but should also consider land-use disturbance, and climate.

3.
Sci Total Environ ; 905: 166957, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37704140

RESUMEN

Fungi are key players in terrestrial organic matter (OM) degradation, but little is known about their role in marine environments. Here we compared the degradation of kelp (Ecklonia radiata) in mesocosms with and without fungicides over 45 days. The aim was to improve our understanding of the vital role of fungal OM degradation and remineralisation and its relevance to marine biogeochemical cycles (e.g., carbon, nitrogen, sulfur, or volatile sulfur). In the presence of fungi, 68 % of the kelp detritus degraded over 45 days, resulting in the production of 0.6 mol of dissolved organic carbon (DOC), 0.16 mol of dissolved inorganic carbon (DIC), 0.23 mol of total alkalinity (TA), and 0.076 mol of CO2, which was subsequently emitted to the atmosphere. Conversely, when fungi were inhibited, the bacterial community diversity was reduced, and only 25 % of the kelp detritus degraded over 45 days. The application of fungicides resulted in the generation of an excess amount of 1.5 mol of DOC, but we observed only 0.02 mol of DIC, and 0.04 mol of TA per one mole of kelp detritus, accompanied by a CO2 emission of 0.081 mol. In contrast, without fungi, remineralisation of kelp detritus to DIC, TA, dimethyl sulfide (DMS), dimethylsulfoniopropionate (DMSP) and methanethiol (MeSH) was significantly reduced. Fungal kelp remineralisation led to a remarkable 100,000 % increase in DMSP production. The observed substantial changes in sediment chemistry when fungi are inhibited highlight the important biogeochemical role of fungal remineralisation, which likely plays a crucial role in defining coastal biogeochemical cycling, blue carbon sequestration, and thus climate regulation.


Asunto(s)
Fungicidas Industriales , Kelp , Materia Orgánica Disuelta , Dióxido de Carbono , Azufre/metabolismo , Hongos/metabolismo , Carbono
4.
Nature ; 613(7944): 449-459, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653564

RESUMEN

River networks represent the largest biogeochemical nexus between the continents, ocean and atmosphere. Our current understanding of the role of rivers in the global carbon cycle remains limited, which makes it difficult to predict how global change may alter the timing and spatial distribution of riverine carbon sequestration and greenhouse gas emissions. Here we review the state of river ecosystem metabolism research and synthesize the current best available estimates of river ecosystem metabolism. We quantify the organic and inorganic carbon flux from land to global rivers and show that their net ecosystem production and carbon dioxide emissions shift the organic to inorganic carbon balance en route from land to the coastal ocean. Furthermore, we discuss how global change may affect river ecosystem metabolism and related carbon fluxes and identify research directions that can help to develop better predictions of the effects of global change on riverine ecosystem processes. We argue that a global river observing system will play a key role in understanding river networks and their future evolution in the context of the global carbon budget.


Asunto(s)
Ciclo del Carbono , Dióxido de Carbono , Ecosistema , Ríos , Dióxido de Carbono/análisis , Secuestro de Carbono , Gases de Efecto Invernadero/análisis
6.
Sci Adv ; 4(6): eaao4985, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29928690

RESUMEN

Organic matter burial in mangrove forests results in the removal and long-term storage of atmospheric CO2, so-called "blue carbon." However, some of this organic matter is metabolized and returned to the atmosphere as CH4. Because CH4 has a higher global warming potential than the CO2 fixed in the organic matter, it can offset the CO2 removed via carbon burial. We provide the first estimate of the global magnitude of this offset. Our results show that high CH4 evasion rates have the potential to partially offset blue carbon burial rates in mangrove sediments on average by 20% (sensitivity analysis offset range, 18 to 22%) using the 20-year global warming potential. Hence, mangrove sediment and water CH4 emissions should be accounted for in future blue carbon assessments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...