Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11312, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760496

RESUMEN

The syncytiotrophoblast is a multinucleated structure that arises from fusion of mononucleated cytotrophoblasts, to sheath the placental villi and regulate transport across the maternal-fetal interface. Here, we ask whether the dynamic mechanical forces that must arise during villous development might influence fusion, and explore this question using in vitro choriocarcinoma trophoblast models. We demonstrate that mechanical stress patterns arise around sites of localized fusion in cell monolayers, in patterns that match computational predictions of villous morphogenesis. We then externally apply these mechanical stress patterns to cell monolayers and demonstrate that equibiaxial compressive stresses (but not uniaxial or equibiaxial tensile stresses) enhance expression of the syndecan-1 and loss of E-cadherin as markers of fusion. These findings suggest that the mechanical stresses that contribute towards sculpting the placental villi may also impact fusion in the developing tissue. We then extend this concept towards 3D cultures and demonstrate that fusion can be enhanced by applying low isometric compressive stresses to spheroid models, even in the absence of an inducing agent. These results indicate that mechanical stimulation is a potent activator of cellular fusion, suggesting novel avenues to improve experimental reproductive modelling, placental tissue engineering, and understanding disorders of pregnancy development.


Asunto(s)
Fusión Celular , Estrés Mecánico , Trofoblastos , Trofoblastos/metabolismo , Trofoblastos/citología , Trofoblastos/fisiología , Humanos , Femenino , Embarazo , Fenómenos Biomecánicos , Placenta/metabolismo , Placenta/citología , Cadherinas/metabolismo , Modelos Biológicos
2.
Nat Commun ; 12(1): 3192, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34045434

RESUMEN

Tissues achieve their complex spatial organization through an interplay between gene regulatory networks, cell-cell communication, and physical interactions mediated by mechanical forces. Current strategies to generate in-vitro tissues have largely failed to implement such active, dynamically coordinated mechanical manipulations, relying instead on extracellular matrices which respond to, rather than impose mechanical forces. Here, we develop devices that enable the actuation of organoids. We show that active mechanical forces increase growth and lead to enhanced patterning in an organoid model of the neural tube derived from single human pluripotent stem cells (hPSC). Using a combination of single-cell transcriptomics and immunohistochemistry, we demonstrate that organoid mechanoregulation due to actuation operates in a temporally restricted competence window, and that organoid response to stretch is mediated extracellularly by matrix stiffness and intracellularly by cytoskeleton contractility and planar cell polarity. Exerting active mechanical forces on organoids using the approaches developed here is widely applicable and should enable the generation of more reproducible, programmable organoid shape, identity and patterns, opening avenues for the use of these tools in regenerative medicine and disease modelling applications.


Asunto(s)
Tubo Neural/citología , Organoides/fisiología , Ingeniería de Tejidos/métodos , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/fisiología , Línea Celular , Matriz Extracelular/fisiología , Humanos , Hidrogeles/química , Mecanotransducción Celular/fisiología , Células Madre Pluripotentes , Polietilenglicoles/química , RNA-Seq , Medicina Regenerativa/métodos , Análisis de la Célula Individual , Ingeniería de Tejidos/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA