Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chembiochem ; 25(2): e202300659, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37942961

RESUMEN

The family of dopamine D2 -like receptors represents an interesting target for a variety of neurological diseases, e. g. Parkinson's disease (PD), addiction, or schizophrenia. In this study we describe the synthesis of a new set of fluorescent ligands as tools for visualization of dopamine D2 -like receptors. Pharmacological characterization in radioligand binding studies identified UR-MN212 (20) as a high-affinity ligand for D2 -like receptors (pKi (D2long R)=8.24, pKi (D3 R)=8.58, pKi (D4 R)=7.78) with decent selectivity towards D1 -like receptors. Compound 20 is a neutral antagonist in a Go1 activation assay at the D2long R, D3 R, and D4 R, which is an important feature for studies using whole cells. The neutral antagonist 20, equipped with a 5-TAMRA dye, displayed rapid association to the D2long R in binding studies using confocal microscopy demonstrating its suitability for fluorescence microscopy. Furthermore, in molecular brightness studies, the ligand's binding affinity could be determined in a single-digit nanomolar range that was in good agreement with radioligand binding data. Therefore, the fluorescent compound can be used for quantitative characterization of native D2 -like receptors in a broad variety of experimental setups.


Asunto(s)
Dopamina , Receptores de Dopamina D2 , Receptores de Dopamina D2/metabolismo , Antagonistas de Dopamina/farmacología , Ligandos , Ensayo de Unión Radioligante , Colorantes
2.
Chembiochem ; 25(2): e202300658, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37983731

RESUMEN

Dopamine D1 -like receptors are the most abundant type of dopamine receptors in the central nervous system and, even after decades of discovery, still highly interesting for the study of neurological diseases. We herein describe the synthesis of a new set of fluorescent ligands, structurally derived from D1 R antagonist SCH-23390 and labeled with two different fluorescent dyes, as tool compounds for the visualization of D1 -like receptors. Pharmacological characterization in radioligand binding studies identified UR-NR435 (25) as a high-affinity ligand for D1 -like receptors (pKi (D1 R)=8.34, pKi (D5 R)=7.62) with excellent selectivity towards D2 -like receptors. Compound 25 proved to be a neutral antagonist at the D1 R and D5 R in a Gs heterotrimer dissociation assay, an important feature to avoid receptor internalization and degradation when working with whole cells. The neutral antagonist 25 displayed rapid association and complete dissociation to the D1 R in kinetic binding studies using confocal microscopy verifying its applicability for fluorescence microscopy. Moreover, molecular brightness studies determined a single-digit nanomolar binding affinity of the ligand, which was in good agreement with radioligand binding data. For this reason, this fluorescent ligand is a useful tool for a sophisticated characterization of native D1 receptors in a variety of experimental setups.


Asunto(s)
Colorantes Fluorescentes , Receptores de Dopamina D1 , Receptores de Dopamina D1/metabolismo , Ligandos , Fluorescencia
3.
ACS Med Chem Lett ; 14(11): 1589-1595, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37974943

RESUMEN

Radioligands used previously for histamine H3 receptor (H3R) are accompanied by a number of disadvantages. In this study, we report the synthesis of the new H3R radioligand [3H]UR-MN259 ([3H]11) with high (radio)chemical purity and stability. The radioligand exhibits sub-nanomolar affinity for the target receptor (pKi (H3R) = 9.56) and displays an outstanding selectivity profile within the histamine receptor family (>100,000-fold selective). [3H]UR-MN259 is ideally suitable for the characterization of H3R ligands in competition binding and shows one-site binding to the H3R in saturation binding experiments. The radiotracer shows fast association to the receptor (τassoc = 6.11 min), as well as full dissociation from the receptor (τdissoc = 14.48 min) in kinetic binding studies. The distinguished profile of [3H]UR-MN259 makes it a highly promising pharmacological tool to further investigate the role of the H3R in the CNS.

4.
ACS Chem Neurosci ; 13(1): 1-15, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34908391

RESUMEN

In an attempt to extend recent studies showing that some clinically evaluated histamine H3 receptor (H3R) antagonists possess nanomolar affinity at sigma-1 receptors (σ1R), we selected 20 representative structures among our previously reported H3R ligands to investigate their affinity at σRs. Most of the tested compounds interact with both sigma receptors to different degrees. However, only six of them showed higher affinity toward σ1R than σ2R with the highest binding preference to σ1R for compounds 5, 11, and 12. Moreover, all these ligands share a common structural feature: the piperidine moiety as the fundamental part of the molecule. It is most likely a critical structural element for dual H3/σ1 receptor activity as can be seen by comparing the data for compounds 4 and 5 (hH3R Ki = 3.17 and 7.70 nM, σ1R Ki = 1531 and 3.64 nM, respectively), where piperidine is replaced by piperazine. We identified the putative protein-ligand interactions responsible for their high affinity using molecular modeling techniques and selected compounds 5 and 11 as lead structures for further evaluation. Interestingly, both ligands turned out to be high-affinity histamine H3 and σ1 receptor antagonists with negligible affinity at the other histamine receptor subtypes and promising antinociceptive activity in vivo. Considering that many literature data clearly indicate high preclinical efficacy of individual selective σ1 or H3R ligands in various pain models, our research might be a breakthrough in the search for novel, dual-acting compounds that can improve existing pain therapies. Determining whether such ligands are more effective than single-selective drugs will be the subject of our future studies.


Asunto(s)
Antagonistas de los Receptores Histamínicos H3 , Receptores Histamínicos H3 , Analgésicos/farmacología , Histamina , Antagonistas de los Receptores Histamínicos , Antagonistas de los Receptores Histamínicos H3/farmacología , Ligandos , Piperazina , Piperidinas/farmacología , Receptores sigma , Relación Estructura-Actividad , Receptor Sigma-1
5.
J Med Chem ; 64(15): 11695-11708, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34309390

RESUMEN

The histamine H3 receptor (H3R) is considered an attractive drug target for various neurological diseases. We here report the synthesis of UR-NR266, a novel fluorescent H3R ligand. Broad pharmacological characterization revealed UR-NR266 as a sub-nanomolar compound at the H3R with an exceptional selectivity profile within the histamine receptor family. The presented neutral antagonist showed fast association to its target and complete dissociation in kinetic binding studies. Detailed characterization of standard H3R ligands in NanoBRET competition binding using UR-NR266 highlights its value as a versatile pharmacological tool to analyze future H3R ligands. The low nonspecific binding observed in all experiments could also be verified in TIRF and confocal microscopy. This fluorescent probe allows the highly specific analysis of native H3R in various assays ranging from optical high throughput technologies to biophysical analyses and single-molecule studies in its natural environment. An off-target screening at 14 receptors revealed UR-NR266 as a selective compound.


Asunto(s)
Transferencia de Energía por Resonancia de Bioluminiscencia , Colorantes Fluorescentes/farmacología , Antagonistas de los Receptores Histamínicos H3/farmacología , Receptores Histamínicos H3/metabolismo , Imagen Individual de Molécula , Sitios de Unión/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Células HEK293 , Antagonistas de los Receptores Histamínicos H3/síntesis química , Antagonistas de los Receptores Histamínicos H3/química , Humanos , Ligandos , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA