Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 326(2): F167-F177, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37969103

RESUMEN

This study aimed to investigate the role of bone marrow stromal cell antigen-1 (Bst1; also known as CD157) in acute kidney injury (AKI). Bst1 is a cell surface molecule with various enzymatic activities and downstream intracellular signaling pathways that modulate the immune response. Previous research has linked Bst1 to diseases such as ovarian cancer, Parkinson's disease, and rheumatoid arthritis. We used bilateral ischemia-reperfusion injury (IRI) as an AKI model and created bone marrow chimeric mice to evaluate the role of Bst1 in bone marrow-derived cells. We also used flow cytometry to identify Bst1/CD157 expression in hematopoietic cells and evaluate immune cell dynamics in the kidney. The findings showed that Bst1-deficient (Bst1-/-) mice were protected against renal bilateral IRI. Bone marrow chimera experiments revealed that Bst1 expression on hematopoietic cells, but not parenchymal cells, induced renal IRI. Bst1 was mainly found in B cells and neutrophils by flow cytometry of the spleen and bone marrow. In vitro, migration of neutrophils from Bst1-/- mice was suppressed, and adoptive transfer of neutrophils from wild-type Bst1+/+ mice abolished the renal protective effect in Bst1 knockout mice. In conclusion, the study demonstrated that Bst1-/- mice are protected against renal IRI and that Bst1 expression in neutrophils plays a crucial role in inducing renal IRI. These findings suggest that targeting Bst1 in neutrophils could be a potential therapeutic strategy for AKI.NEW & NOTEWORTHY Acute kidney injury (AKI), a serious disease for which there is no effective Federal Drug Administration-approved treatment, is associated with high mortality rates. Bone marrow stromal cell antigen-1 (Bst1) is a cell surface molecule that can cause kidney fibrosis, but its role in AKI is largely unknown. Our study showed that Bst1-/- mice revealed a protective effect against renal bilateral ischemia-reperfusion injury (IRI). Adoptive transfer studies confirmed that Bst1 expression in hematopoietic cells, especially neutrophils, contributed to renal bilateral IRI.


Asunto(s)
Lesión Renal Aguda , Células Madre Mesenquimatosas , Daño por Reperfusión , Ratones , Animales , Lesión Renal Aguda/genética , Lesión Renal Aguda/prevención & control , Riñón/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/prevención & control , Neutrófilos/metabolismo , Ratones Noqueados , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL
2.
Front Med (Lausanne) ; 9: 993698, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267620

RESUMEN

Chronic kidney disease is a progressive disease that may lead to end-stage renal disease. Interstitial fibrosis develops as the disease progresses. Therapies that focus on fibrosis to delay or reverse progressive renal failure are limited. We and others showed that sphingosine kinase 2-deficient mice (Sphk2 -/-) develop less fibrosis in mouse models of kidney fibrosis. Sphingosine kinase2 (SphK2), one of two sphingosine kinases that produce sphingosine 1-phosphate (S1P), is primarily located in the nucleus. S1P produced by SphK2 inhibits histone deacetylase (HDAC) and changes histone acetylation status, which can lead to altered target gene expression. We hypothesized that Sphk2 epigenetically regulates downstream genes to induce fibrosis, and we performed a comprehensive analysis using the combination of RNA-seq and ChIP-seq. Bst1/CD157 was identified as a gene that is regulated by SphK2 through a change in histone acetylation level, and Bst1 -/- mice were found to develop less renal fibrosis after unilateral ischemia-reperfusion injury, a mouse model of kidney fibrosis. Although Bst1 is a cell-surface molecule that has a wide variety of functions through its varied enzymatic activities and downstream intracellular signaling pathways, no studies on the role of Bst1 in kidney diseases have been reported previously. In the current study, we demonstrated that Bst1 is a gene that is regulated by SphK2 through epigenetic change and is critical in kidney fibrosis.

3.
Front Med (Lausanne) ; 9: 931293, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966871

RESUMEN

Adenosine triphosphate (ATP) released from injured or dying cells is a potent pro-inflammatory "danger" signal. Alkaline phosphatase (AP), an endogenous enzyme that de-phosphorylates extracellular ATP, likely plays an anti-inflammatory role in immune responses. We hypothesized that ilofotase alfa, a human recombinant AP, protects kidneys from ischemia-reperfusion injury (IRI), a model of acute kidney injury (AKI), by metabolizing extracellular ATP to adenosine, which is known to activate adenosine receptors. Ilofotase alfa (iv) with or without ZM241,385 (sc), a selective adenosine A2A receptor (A2AR) antagonist, was administered 1 h before bilateral IRI in WT, A2AR KO (Adora2a-/- ) or CD73-/- mice. In additional studies recombinant alkaline phosphatase was given after IRI. In an AKI-on-chronic kidney disease (CKD) ischemic rat model, ilofotase alfa was given after the three instances of IRI and rats were followed for 56 days. Ilofotase alfa in a dose dependent manner decreased IRI in WT mice, an effect prevented by ZM241,385 and partially prevented in Adora2a-/- mice. Enzymatically inactive ilofotase alfa was not protective. Ilofotase alfa rescued CD73-/- mice, which lack a 5'-ectonucleotidase that dephosphorylates AMP to adenosine; ZM241,385 inhibited that protection. In both rats and mice ilofotase alfa ameliorated IRI when administered after injury, thus providing relevance for therapeutic dosing of ilofotase alfa following established AKI. In an AKI-on-CKD ischemic rat model, ilofotase alfa given after the third instance of IRI reduced injury. These results suggest that ilofotase alfa promotes production of adenosine from liberated ATP in injured kidney tissue, thereby amplifying endogenous mechanisms that can reverse tissue injury, in part through A2AR-and non-A2AR-dependent signaling pathways.

4.
Sci Transl Med ; 14(658): eabj2681, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35976996

RESUMEN

Chronic kidney disease (CKD), characterized by sustained inflammation and progressive fibrosis, is highly prevalent and can eventually progress to end-stage kidney disease. However, current treatments to slow CKD progression are limited. Sphingosine 1-phosphate (S1P), a product of sphingolipid catabolism, is a pleiotropic mediator involved in many cellular functions, and drugs targeting S1P signaling have previously been studied particularly for autoimmune diseases. The primary mechanism of most of these drugs is functional antagonism of S1P receptor-1 (S1P1) expressed on lymphocytes and the resultant immunosuppressive effect. Here, we documented the role of local S1P signaling in perivascular cells in the progression of kidney fibrosis using primary kidney perivascular cells and several conditional mouse models. S1P was predominantly produced by sphingosine kinase 2 in kidney perivascular cells and exported via spinster homolog 2 (Spns2). It bound to S1P1 expressed in perivascular cells to enhance production of proinflammatory cytokines/chemokines upon injury, leading to immune cell infiltration and subsequent fibrosis. A small-molecule Spns2 inhibitor blocked S1P transport, resulting in suppression of inflammatory signaling in human and mouse kidney perivascular cells in vitro and amelioration of kidney fibrosis in mice. Our study provides insight into the regulation of inflammation and fibrosis by S1P and demonstrates the potential of Spns2 inhibition as a treatment for CKD and potentially other inflammatory and fibrotic diseases that avoids the adverse events associated with systemic modulation of S1P receptors.


Asunto(s)
Inflamación , Insuficiencia Renal Crónica , Animales , Fibrosis , Humanos , Inflamación/metabolismo , Riñón/metabolismo , Lisofosfolípidos , Ratones , Esfingosina/análogos & derivados
5.
Kidney Int ; 100(3): 613-620, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34224760

RESUMEN

Microcirculatory changes and oxidative stress have long been associated with acute kidney injury. Despite substantial progress made by two-photon microscopy of microvascular responses to acute kidney injury in rodent models, little is known about the underlying changes in blood oxygen delivery and tissue oxygen metabolism. To fill this gap, we developed a label-free kidney imaging technique based on photoacoustic microscopy, which enables simultaneous quantification of hemoglobin concentration, oxygen saturation of hemoglobin, and blood flow in peritubular capillaries in vivo. Based on these microvascular parameters, microregional oxygen metabolism was quantified. We demonstrated the utility of this technique by studying kidney hemodynamic and oxygen-metabolic responses to acute kidney injury in mice subject to lipopolysaccharide-induced sepsis. Dynamic photoacoustic microscopy of the peritubular capillary function and tissue oxygen metabolism revealed that sepsis induced an acute and significant reduction in peritubular capillary oxygen saturation of hemoglobin, concomitant with a marked reduction in kidney ATP levels and contrasted with nominal changes in peritubular capillary flow and plasma creatinine. Thus, our technique opens new opportunities to study microvascular and metabolic dysfunction in acute and chronic kidney diseases.


Asunto(s)
Capilares , Microscopía , Animales , Riñón , Ratones , Microcirculación , Oxígeno
6.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33737395

RESUMEN

Acute kidney injury is highly prevalent and associated with high morbidity and mortality, and there are no approved drugs for its prevention and treatment. Vagus nerve stimulation (VNS) alleviates inflammatory diseases including kidney disease; however, neural circuits involved in VNS-induced tissue protection remain poorly understood. The vagus nerve, a heterogeneous group of neural fibers, innervates numerous organs. VNS broadly stimulates these fibers without specificity. We used optogenetics to selectively stimulate vagus efferent or afferent fibers. Anterograde efferent fiber stimulation or anterograde (centripetal) sensory afferent fiber stimulation both conferred kidney protection from ischemia-reperfusion injury. We identified the C1 neurons-sympathetic nervous system-splenic nerve-spleen-kidney axis as the downstream pathway of vagus afferent fiber stimulation. Our study provides a map of the neural circuits important for kidney protection induced by VNS, which is critical for the safe and effective clinical application of VNS for protection from acute kidney injury.


Asunto(s)
Lesión Renal Aguda/etiología , Susceptibilidad a Enfermedades , Neuroinmunomodulación , Bazo/inmunología , Bazo/inervación , Estimulación del Nervio Vago , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Ratones , Neuronas , Sistema Nervioso Simpático/fisiología
7.
Am J Physiol Renal Physiol ; 317(3): F658-F669, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31364375

RESUMEN

Progressive tubulointerstitial fibrosis may occur after acute kidney injury due to persistent inflammation. Purinergic signaling by 5'-ectonucleotidase, CD73, an enzyme that converts AMP to adenosine on the extracellular surface, can suppress inflammation. The role of CD73 in progressive kidney fibrosis has not been elucidated. We evaluated the effect of deletion of CD73 from kidney perivascular cells (including pericytes and/or fibroblasts of the Foxd1+ lineage) on fibrosis. Perivascular cell expression of CD73 was necessary to suppress inflammation and prevent kidney fibrosis in Foxd1CreCD73fl/fl mice evaluated 14 days after unilateral ischemia-reperfusion injury or folic acid treatment (250 mg/kg). Kidneys of Foxd1CreCD73fl/fl mice had greater collagen deposition, expression of proinflammatory markers (including various macrophage markers), and platelet-derived growth factor recepetor-ß immunoreactivity than CD73fl/fl mice. Kidney dysfunction and fibrosis were rescued by administration of soluble CD73 or by macrophage deletion. Isolated CD73-/- kidney pericytes displayed an activated phenotype (increased proliferation and α-smooth muscle actin mRNA expression) compared with wild-type controls. In conclusion, CD73 in perivascular cells may act to suppress myofibroblast transformation and influence macrophages to promote a wound healing response. These results suggest that the purinergic signaling pathway in the kidney interstitial microenvironment orchestrates perivascular cells and macrophages to suppress inflammation and prevent progressive fibrosis.


Asunto(s)
5'-Nucleotidasa/metabolismo , Microambiente Celular , Fibroblastos/metabolismo , Riñón/metabolismo , Macrófagos/metabolismo , Nefritis Intersticial/metabolismo , Pericitos/metabolismo , Daño por Reperfusión/metabolismo , 5'-Nucleotidasa/deficiencia , 5'-Nucleotidasa/genética , Actinas/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Colágeno/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/patología , Fibrosis , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Proteínas Ligadas a GPI/deficiencia , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Mediadores de Inflamación/metabolismo , Riñón/inmunología , Riñón/patología , Macrófagos/patología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Nefritis Intersticial/genética , Nefritis Intersticial/inmunología , Nefritis Intersticial/patología , Pericitos/patología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/inmunología , Daño por Reperfusión/patología , Transducción de Señal , Cicatrización de Heridas
8.
Kidney Int ; 95(3): 563-576, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30670317

RESUMEN

The cholinergic anti-inflammatory pathway (CAP) links the nervous and immune systems and modulates innate and adaptive immunity. Activation of the CAP by vagus nerve stimulation exerts protective effects in a wide variety of clinical disorders including rheumatoid arthritis and Crohn's disease, and in murine models of acute kidney injury including ischemia/reperfusion injury (IRI). The canonical CAP pathway involves activation of splenic alpha7-nicotinic acetylcholine receptor (α7nAChR)-positive macrophages by splenic ß2-adrenergic receptor-positive CD4+ T cells. Here we demonstrate that ultrasound or vagus nerve stimulation also activated α7nAChR-positive peritoneal macrophages, and that adoptive transfer of these activated peritoneal macrophages reduced IRI in recipient mice. The protective effect required α7nAChR, and did not occur in splenectomized mice or in mice lacking T and B cells, suggesting a bidirectional interaction between α7nAChR-positive peritoneal macrophages and other immune cells including ß2-adrenergic receptor-positive CD4+ T cells. We also found that expression of hairy and enhancer of split-1 (Hes1), a basic helix-loop-helix DNA-binding protein, is induced in peritoneal macrophages by ultrasound or vagus nerve stimulation. Adoptive transfer of Hes1-overexpressing peritoneal macrophages reduced kidney IRI. Our data suggest that Hes1 is downstream of α7nAChR and is important to fully activate the CAP. Taken together, these results suggest that peritoneal macrophages play a previously unrecognized role in mediating the protective effect of CAP activation in kidney injury, and that Hes1 is a new candidate pharmacological target to activate the CAP.


Asunto(s)
Lesión Renal Aguda/inmunología , Macrófagos Peritoneales/inmunología , Daño por Reperfusión/inmunología , Factor de Transcripción HES-1/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/terapia , Traslado Adoptivo , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/efectos de la radiación , Linfocitos T CD4-Positivos/trasplante , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Activación de Macrófagos , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/trasplante , Masculino , Ratones , Neuroinmunomodulación/efectos de la radiación , Células RAW 264.7 , Daño por Reperfusión/patología , Daño por Reperfusión/terapia , Factor de Transcripción HES-1/genética , Factor de Transcripción HES-1/inmunología , Terapia por Ultrasonido , Regulación hacia Arriba/efectos de la radiación , Estimulación del Nervio Vago , Receptor Nicotínico de Acetilcolina alfa 7/inmunología
9.
Bioelectron Med ; 5: 13, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32232102

RESUMEN

Neuroimmunomodulation through peripheral nerve activation is an important therapeutic approach to various disorders. Central to this approach is the inflammatory reflex pathway in which the cholinergic anti-inflammatory pathway represents the efferent limb. Recent studies provide a framework for understanding this control pathway, however our understanding remains incomplete. Genetically modified mice, using optogenetics and pharmacogenomics, have been invaluable resources that will allow investigators to disentangle neural pathways that provide a unifying mechanism by which vagal nerve stimulation (and other means of stimulating the pathway) leads to an anti-inflammatory and tissue protective effect. In this review we describe disease models that contribute to our understanding of how vagal nerve stimulation attenuates inflammation and organ injury: acute kidney injury, rheumatoid arthritis, and inflammatory gastrointestinal disease. The gut microbiota contributes to health and disease and the potential role of the vagus nerve in affecting the relationship between gut microbiota and the immune system and modifying diseases remains an intriguing opportunity to attenuate local and systemic inflammation that undergird disease processes.

10.
Artículo en Inglés | MEDLINE | ID: mdl-30126836

RESUMEN

Recent studies have shown renal protective effects of bioelectric approaches, including ultrasound treatment, electrical vagus nerve stimulation, and optogenetic brainstem C1 neuron stimulation. The renal protection acquired by all three modalities was lost in splenectomized mice and/or α7 subunit of the nicotinic acetylcholine receptor-deficient mice. C1 neuron-mediated renal protection was blocked by ß2-adrenergic receptor antagonist. These findings indicate that all three methods commonly, at least partially, activate the cholinergic anti-inflammatory pathway, a well-studied neuroimmune pathway. In this article, we summarize the current understanding of neuroimmune axis-mediated kidney protection in preclinical models of acute kidney injury by these three modalities. Examination of the differences among these three modalities might lead to a further elucidation of the neuroimmune axis involved in renal protection and is of interest for developing new therapeutic approaches.


Asunto(s)
Lesión Renal Aguda/patología , Neuroinmunomodulación/inmunología , Lesión Renal Aguda/inmunología , Animales , Sistema Nervioso Autónomo/inmunología , Sistema Nervioso Autónomo/fisiopatología , Humanos , Inflamación/patología , Ratones , Nervio Vago/inmunología , Nervio Vago/fisiopatología
11.
J Am Soc Nephrol ; 29(7): 1887-1899, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29866797

RESUMEN

Background Pannexin1 (Panx1), an ATP release channel, is present in most mammalian tissues, but the role of Panx1 in health and disease is not fully understood. Panx1 may serve to modulate AKI; ATP is a precursor to adenosine and may function to block inflammation, or ATP may act as a danger-associated molecular pattern and initiate inflammation.Methods We used pharmacologic and genetic approaches to evaluate the effect of Panx1 on kidney ischemia-reperfusion injury (IRI), a mouse model of AKI.Results Pharmacologic inhibition of gap junctions, including Panx1, by administration of carbenoxolone protected mice from IRI. Furthermore, global deletion of Panx1 preserved kidney function and morphology and diminished the expression of proinflammatory molecules after IRI. Analysis of bone marrow chimeric mice revealed that Panx1 expressed on parenchymal cells is necessary for ischemic injury, and both proximal tubule and vascular endothelial Panx1 tissue-specific knockout mice were protected from IRI. In vitro, Panx1-deficient proximal tubule cells released less and retained more ATP under hypoxic stress.Conclusions Panx1 is involved in regulating ATP release from hypoxic cells, and reducing this ATP release may protect kidneys from AKI.


Asunto(s)
Lesión Renal Aguda/metabolismo , Conexinas/antagonistas & inhibidores , Conexinas/genética , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Lesión Renal Aguda/etiología , Lesión Renal Aguda/prevención & control , Adenosina Trifosfato/metabolismo , Animales , Antiulcerosos/farmacología , Células de la Médula Ósea/metabolismo , Carbenoxolona/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Endotelio Vascular , Células Epiteliales/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Masculino , Ratones , Ratones Noqueados , ARN Mensajero/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/prevención & control
12.
J Am Soc Nephrol ; 29(1): 194-206, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29084809

RESUMEN

The proximal tubule epithelium relies on mitochondrial function for energy, rendering the kidney highly susceptible to ischemic AKI. Dynamin-related protein 1 (DRP1), a mediator of mitochondrial fission, regulates mitochondrial function; however, the cell-specific and temporal role of DRP1 in AKI in vivo is unknown. Using genetic murine models, we found that proximal tubule-specific deletion of Drp1 prevented the renal ischemia-reperfusion-induced kidney injury, inflammation, and programmed cell death observed in wild-type mice and promoted epithelial recovery, which associated with activation of the renoprotective ß-hydroxybutyrate signaling pathway. Loss of DRP1 preserved mitochondrial structure and reduced oxidative stress in injured kidneys. Lastly, proximal tubule deletion of DRP1 after ischemia-reperfusion injury attenuated progressive kidney injury and fibrosis. These results implicate DRP1 and mitochondrial dynamics as an important mediator of AKI and progression to fibrosis and suggest that DRP1 may serve as a therapeutic target for AKI.


Asunto(s)
Ácido 3-Hidroxibutírico/metabolismo , Lesión Renal Aguda/genética , Dinaminas/genética , Túbulos Renales Proximales/patología , Mitocondrias/metabolismo , Insuficiencia Renal Crónica/genética , Lesión Renal Aguda/etiología , Animales , Apoptosis/genética , Progresión de la Enfermedad , Dinaminas/antagonistas & inhibidores , Fibrosis , Masculino , Ratones , Ratones Noqueados , Mitocondrias/ultraestructura , Dinámicas Mitocondriales/genética , Nefritis/etiología , Nefritis/genética , Estrés Oxidativo/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Daño por Reperfusión/complicaciones , Transducción de Señal
13.
Nat Rev Nephrol ; 13(11): 669-680, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28970585

RESUMEN

Neural pathways regulate immunity and inflammation via the inflammatory reflex and specific molecular targets can be modulated by stimulating neurons. Neuroimmunomodulation by nonpharmacological methods is emerging as a novel therapeutic strategy for inflammatory diseases, including kidney diseases and hypertension. Electrical stimulation of vagus neurons or treatment with pulsed ultrasound activates the cholinergic anti-inflammatory pathway (CAP) and protects mice from acute kidney injury (AKI). Direct innervation of the kidney, by afferent and efferent neurons, might have a role in modulating and responding to inflammation in various diseases, either locally or by providing feedback to regions of the central nervous system that are important in the inflammatory reflex pathway. Increased sympathetic drive to the kidney has a role in the pathogenesis of hypertension, and selective modulation of neuroimmune interactions in the kidney could potentially be more effective for lowering blood pressure and treating inflammatory kidney diseases than renal denervation. Use of optogenetic tools for selective stimulation of specific neurons has enabled the identification of neural circuits in the brain that modulate kidney function via activation of the CAP. In this Review we discuss evidence for a role of neural circuits in the control of renal inflammation as well as the therapeutic potential of targeting these circuits in the settings of AKI, kidney fibrosis and hypertension.


Asunto(s)
Inmunidad Innata , Enfermedades Renales/terapia , Neuroinmunomodulación , Reflejo/inmunología , Animales , Humanos , Enfermedades Renales/inmunología
14.
J Am Soc Nephrol ; 28(9): 2681-2693, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28539382

RESUMEN

CD4+Foxp3+ regulatory T cells (Tregs) protect the kidney during AKI. We previously found that IL-2, which is critical for Treg homeostasis, upregulates the IL-33 receptor (ST2) on CD4+ T cells, thus we hypothesized that IL-2 and IL-33 cooperate to enhance Treg function. We found that a major subset of Tregs in mice express ST2, and coinjection of IL-2 and IL-33 increased the number of Tregs in lymphoid organs and protected mice from ischemia-reperfusion injury (IRI) more efficiently than either cytokine alone. Accordingly, we generated a novel hybrid cytokine (IL233) bearing the activities of IL-2 and IL-33 for efficient targeting to Tregs. IL233 treatment increased the number of Tregs in blood and spleen and prevented IRI more efficiently than a mixture of IL-2 and IL-33. Injection of IL233 also increased the numbers of Tregs in renal compartments. Moreover, IL233-treated mice had fewer splenic Tregs and more Tregs in kidneys after IRI. In vitro, splenic Tregs from IL233-treated mice suppressed CD4+ T cell proliferation better than Tregs from saline-treated controls. IL233 treatment also improved the ability of isolated Tregs to inhibit IRI in adoptive transfer experiments and protected mice from cisplatin- and doxorubicin-induced nephrotoxic injury. Finally, treatment with IL233 increased the proportion of ST2-bearing innate lymphoid cells (ILC2) in blood and kidneys, and adoptive transfer of ILC2 also protected mice from IRI. Thus, the novel IL233 hybrid cytokine, which utilizes the cooperation of IL-2 and IL-33 to enhance Treg- and ILC2-mediated protection from AKI, bears strong therapeutic potential.


Asunto(s)
Lesión Renal Aguda/inmunología , Lesión Renal Aguda/prevención & control , Interleucina-2/farmacología , Interleucina-33/farmacología , Proteínas Recombinantes de Fusión/farmacología , Daño por Reperfusión/inmunología , Daño por Reperfusión/prevención & control , Linfocitos T Reguladores/efectos de los fármacos , Lesión Renal Aguda/inducido químicamente , Animales , Recuento de Linfocito CD4 , Proliferación Celular , Células Cultivadas , Cisplatino/efectos adversos , Técnicas de Cocultivo , Doxorrubicina/efectos adversos , Proteína 1 Similar al Receptor de Interleucina-1/sangre , Interleucina-2/uso terapéutico , Interleucina-33/uso terapéutico , Riñón/inmunología , Masculino , Ratones , Proteínas Recombinantes de Fusión/uso terapéutico , Bazo/inmunología
15.
Nat Neurosci ; 20(5): 700-707, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28288124

RESUMEN

C1 neurons, located in the medulla oblongata, mediate adaptive autonomic responses to physical stressors (for example, hypotension, hemorrhage and presence of lipopolysaccharides). We describe here a powerful anti-inflammatory effect of restraint stress, mediated by C1 neurons: protection against renal ischemia-reperfusion injury. Restraint stress or optogenetic C1 neuron (C1) stimulation (10 min) protected mice from ischemia-reperfusion injury (IRI). The protection was reproduced by injecting splenic T cells that had been preincubated with noradrenaline or splenocytes harvested from stressed mice. Stress-induced IRI protection was absent in Chrna7 knockout (a7nAChR-/-) mice and greatly reduced by destroying or transiently inhibiting C1. The protection conferred by C1 stimulation was eliminated by splenectomy, ganglionic-blocker administration or ß2-adrenergic receptor blockade. Although C1 stimulation elevated plasma corticosterone and increased both vagal and sympathetic nerve activity, C1-mediated IRI protection persisted after subdiaphragmatic vagotomy or corticosterone receptor blockade. Overall, acute stress attenuated IRI by activating a cholinergic, predominantly sympathetic, anti-inflammatory pathway. C1s were necessary and sufficient to mediate this effect.


Asunto(s)
Bulbo Raquídeo/fisiología , Neuronas/fisiología , Daño por Reperfusión/prevención & control , Estrés Fisiológico/fisiología , Antagonistas Adrenérgicos beta/farmacología , Animales , Presión Sanguínea/fisiología , Corticosterona/sangre , Frecuencia Cardíaca/fisiología , Riñón/fisiopatología , Masculino , Ratones , Ratones Noqueados , Receptores de Esteroides/antagonistas & inhibidores , Daño por Reperfusión/fisiopatología , Restricción Física , Esplenectomía , Sistema Nervioso Simpático/fisiología , Vagotomía , Nervio Vago/fisiología , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/fisiología
16.
J Am Soc Nephrol ; 28(3): 888-902, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27628903

RESUMEN

CD73-derived adenosine plays an anti-inflammatory role in various organs. However, its role in renal ischemia-reperfusion injury (IRI) is controversial. We targeted CD73 mutant mice to determine the function of CD73 expressed by various renal cell types under mild IRI conditions. Mice with CD73 deletion in proximal tubules exhibited exacerbated IRI, comparable with that of CD73-/- mice compared with WT mice. Mice with CD73 deletions in other cell types, including cortical type 1 fibroblast-like cells, mesangial cells, macrophages, and dendritic cells, showed small or no increases in injury above control mice when subjected to threshold levels of ischemia. Results from adoptive transfer experiments between WT and CD73-/- mice and pharmacologic studies modulating enzymatic activity of CD73 and extracellular adenosine levels supported a critical role of adenosine generated by proximal tubule CD73 expression in abrogating IRI. Renal adenosine levels were lower before and after ischemia in CD73-deficient mice. However, reduction in total acid-extractable renal adenosine levels was inadequate to explain the marked difference in kidney injury in these CD73-deficient mice. Furthermore, CD73 inhibition and enzyme replacement studies showed no change in total kidney adenosine levels in treated mice compared with vehicle-treated controls. Protection from IRI in neutrophil-depleted WT recipients was sustained by repopulation with bone marrow neutrophils from WT mice but not by those lacking adenosine 2a receptors (from Adora2a-/- mice). These data support the thesis that local adenosine generated by cells at the injury site is critical for protection from IRI through bone marrow-derived adenosine 2a receptors.


Asunto(s)
5'-Nucleotidasa/fisiología , Riñón/irrigación sanguínea , Daño por Reperfusión/etiología , Animales , Células Cultivadas , Túbulos Renales Proximales , Masculino , Ratones , Ratones Endogámicos C57BL
17.
J Am Soc Nephrol ; 28(4): 1145-1161, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27799486

RESUMEN

Maladaptive repair after AKI may lead to progressive fibrosis and decline in kidney function. Sphingosine 1-phosphate has an important role in kidney injury and pleiotropic effects in fibrosis. We investigated the involvement of sphingosine kinase 1 and 2 (SphK1 and SphK2), which phosphorylate sphingosine to produce sphingosine 1-phosphate, in kidney fibrosis induced by folic acid (FA) or unilateral ischemia-reperfusion injury. Analysis of Masson trichrome staining and fibrotic marker protein and mRNA expression 14 days after AKI revealed that wild-type (WT) and Sphk1-/- mice exhibited more kidney fibrosis than Sphk2-/- mice. Furthermore, kidneys of FA-treated WT and Sphk1-/- mice had greater immune cell infiltration and expression of fibrotic and inflammatory markers than kidneys of FA-treated Sphk2-/- mice. In contrast, kidneys of Sphk2-/- mice exhibited greater expression of Ifng and IFN-γ-responsive genes (Cxcl9 and Cxcl10) than kidneys of WT or Sphk1-/- mice did at this time point. Splenic T cells from untreated Sphk2-/- mice were hyperproliferative and produced more IFN-γ than did those of WT or Sphk1-/- mice. IFN-γ blocking antibody administered to Sphk2-/- mice or deletion of Ifng (Sphk2-/-Ifng-/- mice) blocked the protective effect of SphK2 deficiency in fibrosis. Moreover, adoptive transfer of Sphk2-/- (but not Sphk2-/-Ifng-/- ) CD4 T cells into WT mice blocked FA-induced fibrosis. Finally, a selective SphK2 inhibitor blocked FA-induced kidney fibrosis in WT mice. These studies demonstrate that SphK2 inhibition may serve as a novel therapeutic approach for attenuating kidney fibrosis.


Asunto(s)
Interferón gamma/fisiología , Enfermedades Renales/enzimología , Riñón/enzimología , Riñón/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Animales , Fibrosis/enzimología , Fibrosis/etiología , Fibrosis/prevención & control , Enfermedades Renales/prevención & control , Ratones , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores
18.
Kidney Int ; 90(3): 462-5, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27521104

RESUMEN

The cholinergic anti-inflammatory pathway has been shown to modulate inflammation in disease models such as rheumatoid arthritis and inflammatory bowel disease. A recent study demonstrated a protective effect of vagus nerve stimulation with activation of the cholinergic anti-inflammatory pathway in the ischemia reperfusion model of acute kidney injury.


Asunto(s)
Inflamación , Estimulación del Nervio Vago , Acetilcolina , Lesión Renal Aguda , Distrofias Hereditarias de la Córnea , Humanos , Daño por Reperfusión
19.
J Clin Invest ; 126(5): 1939-52, 2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-27088805

RESUMEN

The nervous and immune systems interact in complex ways to maintain homeostasis and respond to stress or injury, and rapid nerve conduction can provide instantaneous input for modulating inflammation. The inflammatory reflex referred to as the cholinergic antiinflammatory pathway regulates innate and adaptive immunity, and modulation of this reflex by vagus nerve stimulation (VNS) is effective in various inflammatory disease models, such as rheumatoid arthritis and inflammatory bowel disease. Effectiveness of VNS in these models necessitates the integration of neural signals and α7 nicotinic acetylcholine receptors (α7nAChRs) on splenic macrophages. Here, we sought to determine whether electrical stimulation of the vagus nerve attenuates kidney ischemia-reperfusion injury (IRI), which promotes the release of proinflammatory molecules. Stimulation of vagal afferents or efferents in mice 24 hours before IRI markedly attenuated acute kidney injury (AKI) and decreased plasma TNF. Furthermore, this protection was abolished in animals in which splenectomy was performed 7 days before VNS and IRI. In mice lacking α7nAChR, prior VNS did not prevent IRI. Conversely, adoptive transfer of VNS-conditioned α7nAChR splenocytes conferred protection to recipient mice subjected to IRI. Together, these results demonstrate that VNS-mediated attenuation of AKI and systemic inflammation depends on α7nAChR-positive splenocytes.


Asunto(s)
Lesión Renal Aguda/prevención & control , Riñón/inmunología , Macrófagos/inmunología , Daño por Reperfusión/terapia , Bazo/inmunología , Estimulación del Nervio Vago , Receptor Nicotínico de Acetilcolina alfa 7/inmunología , Lesión Renal Aguda/genética , Lesión Renal Aguda/inmunología , Lesión Renal Aguda/patología , Animales , Riñón/patología , Macrófagos/patología , Masculino , Ratones , Ratones Noqueados , Daño por Reperfusión/genética , Daño por Reperfusión/inmunología , Daño por Reperfusión/patología , Bazo/patología , Receptor Nicotínico de Acetilcolina alfa 7/genética
20.
J Am Soc Nephrol ; 27(11): 3383-3393, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26961351

RESUMEN

Epithelial and endothelial injury and a cascade of immune and interstitial cell activation in the kidney lead to AKI. After mild to moderate AKI, the epithelium can regenerate and restore kidney function, yet little is known about the endothelium during these repair processes. Sphingosine 1-phosphate receptor 1 (S1P1), a G protein-coupled receptor, is necessary for vascular homeostasis. Here, we used an inducible genetic approach in a mouse model of AKI, ischemia-reperfusion injury (IRI), to determine the temporal effects of endothelial S1P1 during AKI. Deletion of endothelial S1P1 before IRI exacerbated kidney injury and inflammation, and the delayed deletion of S1P1 after IRI prevented kidney recovery, resulting in chronic inflammation and progressive fibrosis. Specifically, S1P1 directly suppressed endothelial activation of leukocyte adhesion molecule expression and inflammation. Altogether, the data indicate activation of endothelial S1P1 is necessary to protect from IRI and permit recovery from AKI. Endothelial S1P1 may be a therapeutic target for the prevention of early injury as well as prevention of progressive kidney fibrosis after AKI.


Asunto(s)
Lesión Renal Aguda/prevención & control , Receptores de Lisoesfingolípidos/fisiología , Receptores de Lisoesfingolípidos/uso terapéutico , Animales , Endotelio , Fibrosis/prevención & control , Riñón/irrigación sanguínea , Riñón/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Recuperación de la Función , Daño por Reperfusión/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...