RESUMEN
BACKGROUND: Zoology's dark matter comprises hyperdiverse, poorly known taxa that are numerically dominant but largely unstudied, even in temperate regions where charismatic taxa are well understood. Dark taxa are everywhere, but high diversity, abundance, and small size have historically stymied their study. We demonstrate how entomological dark matter can be elucidated using high-throughput DNA barcoding ("megabarcoding"). We reveal the high abundance and diversity of scuttle flies (Diptera: Phoridae) in Sweden using 31,800 specimens from 37 sites across four seasonal periods. We investigate the number of scuttle fly species in Sweden and the environmental factors driving community changes across time and space. RESULTS: Swedish scuttle fly diversity is much higher than previously known, with 549 putative specie) detected, compared to 374 previously recorded species. Hierarchical Modelling of Species Communities reveals that scuttle fly communities are highly structured by latitude and strongly driven by climatic factors. Large dissimilarities between sites and seasons are driven by turnover rather than nestedness. Climate change is predicted to significantly affect the 47% of species that show significant responses to mean annual temperature. Results were robust regardless of whether haplotype diversity or species-proxies were used as response variables. Additionally, species-level models of common taxa adequately predict overall species richness. CONCLUSIONS: Understanding the bulk of the diversity around us is imperative during an era of biodiversity change. We show that dark insect taxa can be efficiently characterised and surveyed with megabarcoding. Undersampling of rare taxa and choice of operational taxonomic units do not alter the main ecological inferences, making it an opportune time to tackle zoology's dark matter.
Asunto(s)
Biodiversidad , Código de Barras del ADN Taxonómico , Dípteros , Animales , Dípteros/fisiología , Dípteros/genética , Suecia , Estaciones del Año , Cambio Climático , Distribución AnimalRESUMEN
The more insects there are, the more food there is for insectivores and the higher the likelihood for insect-associated ecosystem services. Yet, we lack insights into the drivers of insect biomass over space and seasons, for both tropical and temperate zones. We used 245 Malaise traps, managed by 191 volunteers and park guards, to characterize year-round flying insect biomass in a temperate (Sweden) and a tropical (Madagascar) country. Surprisingly, we found that local insect biomass was similar across zones. In Sweden, local insect biomass increased with accumulated heat and varied across habitats, while biomass in Madagascar was unrelated to the environmental predictors measured. Drivers behind seasonality partly converged: In both countries, the seasonality of insect biomass differed between warmer and colder sites, and wetter and drier sites. In Sweden, short-term deviations from expected season-specific biomass were explained by week-to-week fluctuations in accumulated heat, rainfall and soil moisture, whereas in Madagascar, weeks with higher soil moisture had higher insect biomass. Overall, our study identifies key drivers of the seasonal distribution of flying insect biomass in a temperate and a tropical climate. This knowledge is key to understanding the spatial and seasonal availability of insects-as well as predicting future scenarios of insect biomass change.
Asunto(s)
Biomasa , Estaciones del Año , Temperatura , Clima Tropical , Animales , Suecia , Madagascar , Insectos/fisiología , Agua , EcosistemaRESUMEN
Although many studies predict extensive future biodiversity loss and redistribution in the terrestrial realm, future changes in marine biodiversity remain relatively unexplored. In this work, we model global shifts in one of the most important marine functional groups-ecosystem-structuring macrophytes-and predict substantial end-of-century change. By modelling the future distribution of 207 brown macroalgae and seagrass species at high temporal and spatial resolution under different climate-change projections, we estimate that by 2100, local macrophyte diversity will decline by 3-4% on average, with 17 to 22% of localities losing at least 10% of their macrophyte species. The current range of macrophytes will be eroded by 5-6%, and highly suitable macrophyte habitat will be substantially reduced globally (78-96%). Global macrophyte habitat will shift among marine regions, with a high potential for expansion in polar regions.
Asunto(s)
Biodiversidad , Cambio Climático , Ecosistema , Phaeophyceae , Algas Marinas , Algas Marinas/fisiologíaRESUMEN
Many journals have strict word limits, and authors therefore spend considerable time shortening manuscripts. Here, we provide pointers for efficiently doing so while retaining key content. We include general guidance, tips for condensing the different parts of a scientific paper, and advice on what to avoid when shortening manuscripts. We hope that readers will find our guidance helpful.
RESUMEN
Global biodiversity gradients are generally expected to reflect greater species replacement closer to the equator. However, empirical validation of global biodiversity gradients largely relies on vertebrates, plants, and other less diverse taxa. Here we assess the temporal and spatial dynamics of global arthropod biodiversity dynamics using a beta-diversity framework. Sampling includes 129 sampling sites whereby malaise traps are deployed to monitor temporal changes in arthropod communities. Overall, we encountered more than 150,000 unique barcode index numbers (BINs) (i.e. species proxies). We assess between site differences in community diversity using beta-diversity and the partitioned components of species replacement and richness difference. Global total beta-diversity (dissimilarity) increases with decreasing latitude, greater spatial distance and greater temporal distance. Species replacement and richness difference patterns vary across biogeographic regions. Our findings support long-standing, general expectations of global biodiversity patterns. However, we also show that the underlying processes driving patterns may be regionally linked.
Asunto(s)
Artrópodos , Biodiversidad , Animales , Artrópodos/clasificación , Artrópodos/fisiología , Geografía , Análisis Espacio-TemporalRESUMEN
Insects are the most diverse group of animals on Earth, yet our knowledge of their diversity, ecology and population trends remains abysmally poor. Four major technological approaches are coming to fruition for use in insect monitoring and ecological research-molecular methods, computer vision, autonomous acoustic monitoring and radar-based remote sensing-each of which has seen major advances over the past years. Together, they have the potential to revolutionize insect ecology, and to make all-taxa, fine-grained insect monitoring feasible across the globe. So far, advances within and among technologies have largely taken place in isolation, and parallel efforts among projects have led to redundancy and a methodological sprawl; yet, given the commonalities in their goals and approaches, increased collaboration among projects and integration across technologies could provide unprecedented improvements in taxonomic and spatio-temporal resolution and coverage. This theme issue showcases recent developments and state-of-the-art applications of these technologies, and outlines the way forward regarding data processing, cost-effectiveness, meaningful trend analysis, technological integration and open data requirements. Together, these papers set the stage for the future of automated insect monitoring. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Asunto(s)
Biodiversidad , Insectos , Insectos/fisiología , Animales , Tecnología de Sensores Remotos/métodos , Tecnología de Sensores Remotos/instrumentación , Monitoreo Biológico/métodosRESUMEN
In understudied regions of the world, beekeeper records can provide valuable insights into changes in pollinator population trends. We conducted a questionnaire survey of 116 beekeepers in a mountainous area of Western Nepal, where the native honeybee Apis cerana cerana is kept as a managed bee. We complemented the survey with field data on insect-crop visitation, a household income survey, and an interview with a local lead beekeeper. In total, 76% of beekeepers reported declines in honeybees, while 86% and 78% reported declines in honey yield and number of beehives, respectively. Honey yield per hive fell by 50% between 2012 and 2022, whilst the number of occupied hives decreased by 44%. Beekeepers ranked climate change and declining flower abundance as the most important drivers of the decline. This raises concern for the future food and economic security of this region, where honey sales contribute to 16% of total household income, and where Apis cerana cerana plays a major role in crop pollination, contributing more than 50% of all flower visits to apple, cucumber, and pumpkin. To mitigate further declines, we promote native habitat and wildflower preservation, and using well-insulated log hives to buffer bees against the increasingly extreme temperature fluctuations.
RESUMEN
Shifts in phenology are among the key responses of organisms to climate change. When rates of phenological change differ between interacting species they may result in phenological asynchrony. Studies have found conflicting patterns concerning the direction and magnitude of changes in synchrony, which have been attributed to biological factors. A hitherto overlooked additional explanation are differences in the currency used to quantify resource phenology, such as abundance and biomass. Studying an insectivorous bird (the sanderling) and its prey, we show that the median date of cumulative arthropod biomass occurred, on average, 6.9 days after the median date of cumulative arthropod abundance. In some years this difference could be as large as 21 days. For 23 years, hatch dates of sanderlings became less synchronized with the median date of arthropod abundance, but more synchronized with the median date of arthropod biomass. The currency-specific trends can be explained by our finding that mean biomass per arthropod specimen increased with date. Using a conceptual simulation, we show that estimated rates of phenological change for abundance and biomass can differ depending on temporal shifts in the size distribution of resources. We conclude that studies of trophic mismatch based on different currencies for resource phenology can be incompatible with each other.
Asunto(s)
Artrópodos , Charadriiformes , Animales , Estaciones del Año , Aves , Biomasa , Cambio Climático , TemperaturaRESUMEN
The Eltonian niche of a species is defined as its set of interactions with other taxa. How this set varies with biotic, abiotic and human influences is a core question of modern ecology. In seasonal environments, the realized Eltonian niche is likely to vary due to periodic changes in the occurrence and abundance of interaction partners and changes in species behavior and preferences. Also, human management decisions may leave strong imprints on species interactions. To compare the impact of seasonality to that of management effects, honeybees provide an excellent model system. Based on DNA traces of interaction partners archived in honey, we can infer honeybee interactions with floral resources and microbes in the surrounding habitats, their hives, and themselves. Here, we resolved seasonal and management-based impacts on honeybee interactions by sampling beehives repeatedly during the honey-storing period of honeybees in Finland. We then use a genome-skimming approach to identify the taxonomic contents of the DNA in the samples. To compare the effects of the season to the effects of location, management, and the colony itself in shaping honeybee interactions, we used joint species distribution modeling. We found that honeybee interactions with other taxa varied greatly among taxonomic and functional groups. Against a backdrop of wide variation in the interactions documented in the DNA content of honey from bees from different hives, regions, and beekeepers, the imprint of the season remained relatively small. Overall, a honey-based approach offers unique insights into seasonal variation in the identity and abundance of interaction partners among honeybees. During the summer, the availability and use of different interaction partners changed substantially, but hive- and taxon-specific patterns were largely idiosyncratic as modified by hive management. Thus, the beekeeper and colony identity are as important determinants of the honeybee's realized Eltonian niche as is seasonality.
RESUMEN
1: Metabarcoding (high-throughput sequencing of marker gene amplicons) has emerged as a promising and cost-effective method for characterizing insect community samples. Yet, the methodology varies greatly among studies and its performance has not been systematically evaluated to date. In particular, it is unclear how accurately metabarcoding can resolve species communities in terms of presence-absence, abundances, and biomass. 2: Here we use mock community experiments and a simple probabilistic model to evaluate the effect of different DNA extraction protocols on metabarcoding performance. Specifically, we ask four questions: (Q1) How consistent are the recovered community profiles across replicate mock communities?; (Q2) How does the choice of lysis buffer affect the recovery of the original community?; (Q3) How are community estimates affected by differing lysis times and homogenization?; and (Q4) Is it possible to obtain adequate species abundance estimates through the use of biological spike-ins? 3: We show that estimates are quite variable across community replicates. In general, a mild lysis protocol is better at reconstructing species lists and approximate counts, while homogenization is better at retrieving biomass composition. Small insects are more likely to be detected in lysates, while some tough species require homogenization to be detected. Results are less consistent across biological replicates for lysates than for homogenates. Some species are associated with strong PCR amplification bias, which complicates the reconstruction of species counts. Yet, with adequate spike-in data, species abundance can be determined with roughly 40% standard error for homogenates, and with roughly 50% standard error for lysates, under ideal conditions. In the latter case, however, this often requires species-specific reference data, while spike-in data generalizes better across species for homogenates. 4: We conclude that a non-destructive, mild lysis approach shows the highest promise for presence/absence description of the community, while also allowing future morphological or molecular work on the material. However, homogenization protocols perform better for characterizing community composition, in particular in terms of biomass.
RESUMEN
Arthropods play a crucial role in terrestrial ecosystems, for instance in mediating energy fluxes and in forming the food base for many organisms. To better understand their functional role in such ecosystem processes, monitoring of trends in arthropod biomass is essential. Obtaining direct measurements of the body mass of individual specimens is laborious. Therefore, these data are often indirectly acquired by utilizing allometric length-biomass relationships based on a correlative parameter, such as body length. Previous studies have often used such relationships with a low taxonomic resolution and/or small sample size and/or adopted regressions calibrated in different biomes. Despite the scientific interest in the ecology of arctic arthropods, no site-specific family-level length-biomass relationships have hitherto been published. Here we present 27 family-specific length-biomass relationships from two sites in the High Arctic: Zackenberg in northeast Greenland and Knipovich in north Taimyr, Russia. We show that length-biomass regressions from different sites within the same biome did not affect estimates of phenology but did result in substantially different estimates of arthropod biomass. Estimates of daily biomass at Zackenberg were on average 24% higher when calculated using regressions for Knipovich compared to using regressions for Zackenberg. In addition, calculations of daily arthropod biomass at Zackenberg based on order-level regressions from frequently cited studies in literature revealed overestimations of arthropod biomass ranging from 69.7% to 130% compared to estimates based on regressions for Zackenberg. Our results illustrate that the use of allometric relationships from different sites can significantly alter the biological interpretation of, for instance, the interaction between insectivorous birds and their arthropod prey. We conclude that length-biomass relationships should be locally established rather than being based on global relationships.
Asunto(s)
Artrópodos , Ecosistema , Humanos , Animales , Biomasa , Estatura , EulipotyphlaRESUMEN
Protected areas are considered fundamental to counter biodiversity loss. However, evidence for their effectiveness in averting local extinctions remains scarce and taxonomically biased. We employ a robust counterfactual multi-taxon approach to compare occupancy patterns of 638 species, including birds (150), mammals (23), plants (39) and phytoplankton (426) between protected and unprotected sites across four decades in Finland. We find mixed impacts of protected areas, with only a small proportion of species explicitly benefiting from protection-mainly through slower rates of decline inside protected areas. The benefits of protection are enhanced for larger protected areas and are traceable to when the sites were protected, but are mostly unrelated to species conservation status or traits (size, climatic niche and threat status). Our results suggest that the current protected area network can partly contribute to slow down declines in occupancy rates, but alone will not suffice to halt the biodiversity crisis. Efforts aimed at improving coverage, connectivity and management will be key to enhance the effectiveness of protected areas towards bending the curve of biodiversity loss.
Asunto(s)
Biodiversidad , Agua Dulce , Animales , Finlandia , Fenotipo , Fitoplancton , MamíferosRESUMEN
The Arctic is warming at an alarming rate. While changes in plant community composition and phenology have been extensively reported, the effects of climate change on reproduction remain poorly understood. We quantified multidecadal changes in flower density for nine tundra plant species at a low- and a high-Arctic site in Greenland. We found substantial changes in flower density over time, but the temporal trends and drivers of flower density differed both between species and sites. Total flower density increased over time at the low-Arctic site, whereas the high-Arctic site showed no directional change. Within and between sites, the direction and rate of change differed among species, with varying effects of summer temperature, the temperature of the previous autumn and the timing of snowmelt. Finally, all species showed a strong trade-off in flower densities between successive years, suggesting an effective cost of reproduction. Overall, our results reveal region- and taxon-specific variation in the sensitivity and responses of co-occurring species to shared climatic drivers, and a clear cost of reproductive investment among Arctic plants. The ultimate effects of further changes in climate may thus be decoupled between species and across space, with critical knock-on effects on plant species dynamics, food web structure and overall ecosystem functioning. Supplementary Information: The online version contains supplementary material available at 10.1007/s00300-023-03164-2.
RESUMEN
With the global change in climate, the Arctic has been pinpointed as the region experiencing the fastest rates of change. As a result, Arctic biological responses-such as shifts in phenology-are expected to outpace those at lower latitudes. 15 years ago, a decade-long dataset from Zackenberg in High Arctic Greenland revealed rapid rates of phenological change.1 To explore how the timing of spring phenology has developed since, we revisit the Zackenberg time series on flowering plants, arthropods, and birds. Drawing on the full 25-year period of 1996-2020, we find little directional change in the timing of events despite ongoing climatic change. We attribute this finding to a shift in the temporal patterns of climate conditions, from previous directional change to current high inter-annual variability. Additionally, some taxa appear to have reached the limits of their phenological responses, resulting in a leveling off in their phenological responses in warm years. Our findings demonstrate the importance of long-term monitoring of taxa from across trophic levels within the community, allowing for detecting shifts in sensitivities and responses and thus for updated inference in the light of added information.
Asunto(s)
Cambio Climático , Clima , Animales , Temperatura , Estaciones del Año , Regiones Árticas , Flores/fisiologíaRESUMEN
Insects are diverse and sustain essential ecosystem functions, yet remain understudied. Recent reports about declines in insect abundance and diversity have highlighted a pressing need for comprehensive large-scale monitoring. Metabarcoding (high-throughput bulk sequencing of marker gene amplicons) offers a cost-effective and relatively fast method for characterizing insect community samples. However, the methodology applied varies greatly among studies, thus complicating the design of large-scale and repeatable monitoring schemes. Here we describe a non-destructive metabarcoding protocol that is optimized for high-throughput processing of Malaise trap samples and other bulk insect samples. The protocol details the process from obtaining bulk samples up to submitting libraries for sequencing. It is divided into four sections: 1) Laboratory workspace preparation; 2) Sample processing-decanting ethanol, measuring the wet-weight biomass and the concentration of the preservative ethanol, performing non-destructive lysis and preserving the insect material for future work; 3) DNA extraction and purification; and 4) Library preparation and sequencing. The protocol relies on readily available reagents and materials. For steps that require expensive infrastructure, such as the DNA purification robots, we suggest alternative low-cost solutions. The use of this protocol yields a comprehensive assessment of the number of species present in a given sample, their relative read abundances and the overall insect biomass. To date, we have successfully applied the protocol to more than 7000 Malaise trap samples obtained from Sweden and Madagascar. We demonstrate the data yield from the protocol using a small subset of these samples.
Asunto(s)
Biodiversidad , Ecosistema , Animales , Código de Barras del ADN Taxonómico/métodos , Insectos/genética , Etanol , ADN/genéticaRESUMEN
The distribution and community assembly of above- and belowground microbial communities associated with individual plants remain poorly understood, despite its consequences for plant-microbe interactions and plant health. Depending on how microbial communities are structured, we can expect different effects of the microbial community on the health of individual plants and on ecosystem processes. Importantly, the relative role of different factors will likely differ with the scale examined. Here, we address the driving factors at a landscape level, where each individual unit (oak trees) is accessible to a joint species pool. This allowed to quantify the relative effect of environmental factors and dispersal on the distribution of two types of fungal communities: those associated with the leaves and those associated with the soil of Quercus robur trees in a landscape in southwestern Finland. Within each community type, we compared the role of microclimatic, phenological, and spatial variables, and across community types, we examined the degree of association between the respective communities. Most of the variation in the foliar fungal community was found within trees, whereas soil fungal community composition showed positive spatial autocorrelation up to 50 m. Microclimate, tree phenology, and tree spatial connectivity explained little variation in the foliar and soil fungal communities. Foliar and soil fungal communities differed strongly in community structure, with no significant concordance detected between them. We provide evidence that foliar and soil fungal communities assemble independent of each other and are structured by different ecological processes.
RESUMEN
Most of arthropod biodiversity is unknown to science. Consequently, it has been unclear whether insect communities around the world are dominated by the same or different taxa. This question can be answered through standardized sampling of biodiversity followed by estimation of species diversity and community composition with DNA barcodes. Here this approach is applied to flying insects sampled by 39 Malaise traps placed in five biogeographic regions, eight countries and numerous habitats (>225,000 specimens belonging to >25,000 species in 458 families). We find that 20 insect families (10 belonging to Diptera) account for >50% of local species diversity regardless of clade age, continent, climatic region and habitat type. Consistent differences in family-level dominance explain two-thirds of variation in community composition despite massive levels of species turnover, with most species (>97%) in the top 20 families encountered at a single site only. Alarmingly, the same families that dominate insect diversity are 'dark taxa' in that they suffer from extreme taxonomic neglect, with little signs of increasing activities in recent years. Taxonomic neglect tends to increase with diversity and decrease with body size. Identifying and tackling the diversity of 'dark taxa' with scalable techniques emerge as urgent priorities in biodiversity science.
Asunto(s)
Dípteros , Insectos , Animales , Ecosistema , Biodiversidad , Tamaño CorporalRESUMEN
The exchange of material and individuals between neighboring food webs is ubiquitous and affects ecosystem functioning. Here, we explore animal foraging movement between adjacent, heterogeneous habitats and its effect on a suite of interconnected ecosystem functions. Combining dynamic food web models with nutrient-recycling models, we study foraging across habitats that differ in fertility and plant diversity. We found that net foraging movement flowed from high to low fertility or high to low diversity and boosted stocks and flows across the whole loop of ecosystem functions, including biomass, detritus, and nutrients, in the recipient habitat. Contrary to common assumptions, however, the largest flows were often between the highest and intermediate fertility habitats rather than highest and lowest. The effect of consumer influx on ecosystem functions was similar to the effect of increasing fertility. Unlike fertility, however, consumer influx caused a shift toward highly predator-dominated biomass distributions, especially in habitats that were unable to support predators in the absence of consumer foraging. This shift resulted from both direct and indirect effects propagated through the interconnected ecosystem functions. Only by considering both stocks and fluxes across the whole loop of ecosystem functions do we uncover the mechanisms driving our results. In conclusion, the outcome of animal foraging movements will differ from that of dispersal and diffusion. Together we show how considering active types of animal movement and the interconnectedness of ecosystem functions can aid our understanding of the patchy landscapes of the Anthropocene.
Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Biomasa , Plantas , NutrientesRESUMEN
Insects provide key pollination services in most terrestrial biomes, but this service depends on a multistep interaction between insect and plant. An insect needs to visit a flower, receive pollen from the anthers, move to another conspecific flower, and finally deposit the pollen on a receptive stigma. Each of these steps may be affected by climate change, and focusing on only one of them (e.g., flower visitation) may miss important signals of change in service provision. In this study, we combine data on visitation, pollen transport, and single-visit pollen deposition to estimate functional outcomes in the high Arctic plant-pollinator network of Zackenberg, Northeast Greenland, a model system for global warming-associated impacts in pollination services. Over two decades of rapid climate warming, we sampled the network repeatedly: in 1996, 1997, 2010, 2011, and 2016. Although the flowering plant and insect communities and their interactions varied substantially between years, as expected based on highly variable Arctic weather, there was no detectable directional change in either the structure of flower-visitor networks or estimated pollen deposition. For flower-visitor networks compiled over a single week, species phenologies caused major within-year variation in network structure despite consistency across years. Weekly networks for the middle of the flowering season emerged as especially important because most pollination service can be expected to be provided by these large, highly nested networks. Our findings suggest that pollination ecosystem service in the high Arctic is remarkably resilient. This resilience may reflect the plasticity of Arctic biota as an adaptation to extreme and unpredictable weather. However, most pollination service was contributed by relatively few fly taxa (Diptera: Spilogona sanctipauli and Drymeia segnis [Muscidae] and species of Rhamphomyia [Empididae]). If these key pollinators are negatively affected by climate change, network structure and the pollination service that depends on it would be seriously compromised.
RESUMEN
Insects are the most diverse group of animals on Earth, but their small size and high diversity have always made them challenging to study. Recent technological advances have the potential to revolutionise insect ecology and monitoring. We describe the state of the art of four technologies (computer vision, acoustic monitoring, radar, and molecular methods), and assess their advantages, current limitations, and future potential. We discuss how these technologies can adhere to modern standards of data curation and transparency, their implications for citizen science, and their potential for integration among different monitoring programmes and technologies. We argue that they provide unprecedented possibilities for insect ecology and monitoring, but it will be important to foster international standards via collaboration.