Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Biol ; 19(10): 1237-46, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-23102218

RESUMEN

Superoxide (O(2)(·-)) is the proximal mitochondrial reactive oxygen species underlying pathology and redox signaling. This central role prioritizes development of a mitochondria-targeted reagent selective for controlling O(2)(·-). We have conjugated a mitochondria-targeting triphenylphosphonium (TPP) cation to a O(2)(·-)-selective pentaaza macrocyclic Mn(II) superoxide dismutase (SOD) mimetic to make MitoSOD, a mitochondria-targeted SOD mimetic. MitoSOD showed rapid and extensive membrane potential-dependent uptake into mitochondria without loss of Mn and retained SOD activity. Pulse radiolysis measurements confirmed that MitoSOD was a very effective catalytic SOD mimetic. MitoSOD also catalyzes the ascorbate-dependent reduction of O(2)(·-). The combination of mitochondrial uptake and O(2)(·-) scavenging by MitoSOD decreased inactivation of the matrix enzyme aconitase caused by O(2)(·-). MitoSOD is an effective mitochondria-targeted macrocyclic SOD mimetic that selectively protects mitochondria from O(2)(·-) damage.


Asunto(s)
Materiales Biomiméticos/farmacología , Compuestos Macrocíclicos/química , Mitocondrias/efectos de los fármacos , Aconitato Hidratasa/química , Aconitato Hidratasa/metabolismo , Animales , Ácido Ascórbico/química , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/química , Catálisis , Cristalografía por Rayos X , Cinética , Manganeso/química , Manganeso/farmacología , Microsomas Hepáticos/metabolismo , Mitocondrias/metabolismo , Conformación Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Oxidación-Reducción , Radiólisis de Impulso , Ratas , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo
2.
Ann N Y Acad Sci ; 1147: 105-11, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19076435

RESUMEN

Mitochondrial oxidative damage is thought to contribute to a wide range of human diseases; therefore, the development of approaches to decrease this damage may have therapeutic potential. Mitochondria-targeted antioxidants that selectively block mitochondrial oxidative damage and prevent some types of cell death have been developed. These compounds contain antioxidant moieties, such as ubiquinone, tocopherol, or nitroxide, that are targeted to mitochondria by covalent attachment to a lipophilic triphenylphosphonium cation. Because of the large mitochondrial membrane potential, the cations are accumulated within the mitochondria inside cells. There, the conjugated antioxidant moiety protects mitochondria from oxidative damage. Here, we outline some of the work done to date on these compounds and how they may be developed as therapies.


Asunto(s)
Antioxidantes/uso terapéutico , Mitocondrias/efectos de los fármacos , Antioxidantes/farmacología , Humanos , Mitocondrias/metabolismo , Estrés Oxidativo
3.
Biochem J ; 411(3): 633-45, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18294140

RESUMEN

Mitochondria-targeted molecules comprising the lipophilic TPP (triphenylphosphonium) cation covalently linked to a hydrophobic bioactive moiety are used to modify and probe mitochondria in cells and in vivo. However, it is unclear how hydrophobicity affects the rate and extent of their uptake into mitochondria within cells, making it difficult to interpret experiments because their intracellular concentration in different compartments is uncertain. To address this issue, we compared the uptake into both isolated mitochondria and mitochondria within cells of two hydrophobic TPP derivatives, [3H]MitoQ (mitoquinone) and [3H]DecylTPP, with the more hydrophilic TPP cation [3H]TPMP (methyltriphenylphosphonium). Uptake of MitoQ by mitochondria and cells was described by the Nernst equation and was approximately 5-fold greater than that for TPMP, as a result of its greater binding within the mitochondrial matrix. DecylTPP was also taken up extensively by cells, indicating that increased hydrophobicity enhanced uptake. Both MitoQ and DecylTPP were taken up very rapidly into cells, reaching a steady state within 15 min, compared with approximately 8 h for TPMP. This far faster uptake was the result of the increased rate of passage of hydrophobic TPP molecules through the plasma membrane. Within cells MitoQ was predominantly located within mitochondria, where it was rapidly reduced to the ubiquinol form, consistent with its protective effects in cells and in vivo being due to the ubiquinol antioxidant. The strong influence of hydrophobicity on TPP cation uptake into mitochondria within cells facilitates the rational design of mitochondria-targeted compounds to report on and modify mitochondrial function in vivo.


Asunto(s)
Membrana Celular/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Mitocondrias Hepáticas/metabolismo , Compuestos Onio/metabolismo , Compuestos de Tritilo/metabolismo , Animales , Transporte Biológico , Cationes/química , Cationes/metabolismo , Fibroblastos , Humanos , Células Jurkat , Estructura Molecular , Compuestos Onio/química , Oxidación-Reducción , Ratas , Factores de Tiempo , Compuestos de Tritilo/química
4.
Free Radic Biol Med ; 42(12): 1766-80, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17512456

RESUMEN

Lipoic acid (LA) is a widely used antioxidant that protects mitochondria from oxidative damage in vivo. Much of this protection is thought to be due to the reduction of LA to dihydrolipoic acid (LAH(2)). This reduction is catalyzed in vivo by thioredoxin, thioredoxin reductase (TrxR), and lipoamide dehydrogenase. We hypothesized that specifically targeting LA to mitochondria, the site of most cellular reactive oxygen species production, would make it a more effective antioxidant. To do this, we made a novel molecule, MitoLipoic acid, by attaching lipoic acid to the lipophilic triphenylphosphonium cation. MitoL was accumulated rapidly within mitochondria several-hundred fold driven by the membrane potential. MitoL was reduced to the active antioxidant dihydroMitoLipoic acid by thioredoxin and by lipoamide dehydrogenase but not by TrxR. In isolated mitochondria or cells MitoL was only slightly reduced (5-10%), while, in contrast, LA was extensively reduced. This difference was largely due to the reaction of LA with TrxR, which did not occur for MitoL. Furthermore, in cells MitoL was quantitatively converted to an S-methylated product. As a consequence of its lack of reduction, MitoL was not protective for mitochondria or cells against a range of oxidative stresses. These results suggest that the protective action of LA in vivo may require its reduction to LAH(2) and that this reduction is largely mediated by TrxR.


Asunto(s)
Antioxidantes/farmacología , Mitocondrias Hepáticas/efectos de los fármacos , Compuestos Organofosforados/síntesis química , Ácido Tióctico/farmacología , Animales , Antioxidantes/química , Dihidrolipoamida Deshidrogenasa/metabolismo , Mitocondrias Hepáticas/metabolismo , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , Oxidación-Reducción , Estrés Oxidativo , Ratas , Especies Reactivas de Oxígeno , Ácido Tióctico/química , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/metabolismo
5.
Mitochondrion ; 7 Suppl: S94-102, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17449335

RESUMEN

Mitochondrial oxidative damage contributes to a range of degenerative diseases. Ubiquinones have been shown to protect mitochondria from oxidative damage, but only a small proportion of externally administered ubiquinone is taken up by mitochondria. Conjugation of the lipophilic triphenylphosphonium cation to a ubiquinone moiety has produced a compound, MitoQ, which accumulates selectively into mitochondria. MitoQ passes easily through all biological membranes and, because of its positive charge, is accumulated several hundred-fold within mitochondria driven by the mitochondrial membrane potential. MitoQ protects mitochondria against oxidative damage in vitro and following oral delivery, and may therefore form the basis for mitochondria-protective therapies.


Asunto(s)
Mitocondrias/metabolismo , Compuestos Organofosforados/metabolismo , Quinonas/química , Ubiquinona/análogos & derivados , Administración Oral , Animales , Cationes , Membrana Celular/metabolismo , Humanos , Potencial de la Membrana Mitocondrial , Potenciales de la Membrana , Enfermedades Mitocondriales/terapia , Modelos Biológicos , Modelos Químicos , Oxígeno/metabolismo , Ubiquinona/metabolismo
6.
Proc Natl Acad Sci U S A ; 103(41): 15038-43, 2006 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-17015830

RESUMEN

The putative oxidation of hydroethidine (HE) has become a widely used fluorescent assay for the detection of superoxide in cultured cells. By covalently joining HE to a hexyl triphenylphosphonium cation (Mito-HE), the HE moiety can be targeted to mitochondria. However, the specificity of HE and Mito-HE for superoxide in vivo is limited by autooxidation as well as by nonsuperoxide-dependent cellular processes that can oxidize HE probes to ethidium (Etd). Recently, superoxide was shown to react with HE to generate 2-hydroxyethidium [Zhao, H., Kalivendi, S., Zhang, H., Joseph, J., Nithipatikom, K., Vasquez-Vivar, J. & Kalyanaraman, B. (2003) Free Radic. Biol. Med. 34, 1359-1368]. However, 2-hydroxyethidium is difficult to distinguish from Etd by conventional fluorescence techniques exciting at 510 nm. While investigating the oxidation of Mito-HE by superoxide, we found that the superoxide product of both HE and Mito-HE could be selectively excited at 396 nm with minimal interference from other nonspecific oxidation products. The oxidation of Mito-HE monitored at 396 nm by antimycin-stimulated mitochondria was 30% slower than at 510 nm, indicating that superoxide production may be overestimated at 510 nm by even a traditional superoxide-stimulating mitochondrial inhibitor. The rate-limiting step for oxidation by superoxide was 4x10(6) M-1.s-1, which is proposed to involve the formation of a radical from Mito-HE. The rapid reaction with a second superoxide anion through radical-radical coupling may explain how Mito-HE and HE can compete for superoxide in vivo with intracellular superoxide dismutases. Monitoring oxidation at both 396 and 510 nm of excitation wavelengths can facilitate the more selective detection of superoxide in vivo.


Asunto(s)
Etidio , Colorantes Fluorescentes , Fenantridinas , Superóxidos/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Cromatografía Líquida de Alta Presión , Microscopía Confocal , Mitocondrias/química , Mitocondrias/metabolismo , Ratas , Ratas Sprague-Dawley , Espectrometría de Fluorescencia , Espectrometría de Masa por Ionización de Electrospray , Superóxidos/química
7.
Biochem J ; 400(1): 199-208, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16948637

RESUMEN

Lipophilic monocations can pass through phospholipid bilayers and accumulate in negatively-charged compartments such as the mitochondrial matrix, driven by the membrane potential. This property is used to visualize mitochondria, to deliver therapeutic molecules to mitochondria and to measure the membrane potential. In theory, lipophilic dications have a number of advantages over monocations for these tasks, as the double charge should lead to a far greater and more selective uptake by mitochondria, increasing their therapeutic potential. However, the double charge might also limit the movement of lipophilic dications through phospholipid bilayers and little is known about their interaction with mitochondria. To see whether lipophilic dications could be taken up by mitochondria and cells, we made a series of bistriphenylphosphonium cations comprising two triphenylphosphonium moieties linked by a 2-, 4-, 5-, 6- or 10-carbon methylene bridge. The 5-, 6- and 10-carbon dications were taken up by energized mitochondria, whereas the 2- and 4-carbon dications were not. The accumulation of the dication was greater than that of the monocation methyltriphenylphosphonium. However, the uptake of dications was only described by the Nernst equation at low levels of accumulation, and beyond a threshold membrane potential of 90-100 mV there was negligible increase in dication uptake. Interestingly, the 5- and 6-carbon dications were not accumulated by cells, due to lack of permeation through the plasma membrane. These findings indicate that conjugating compounds to dications offers only a minor increase over monocations in delivery to mitochondria. Instead, this suggests that it may be possible to form dications within mitochondria that then remain within the cell.


Asunto(s)
Membranas Intracelulares/metabolismo , Lípidos/química , Mitocondrias/metabolismo , Compuestos Organofosforados/metabolismo , Compuestos de Terfenilo/metabolismo , Adenosina Trifosfato/metabolismo , Algoritmos , Animales , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Cationes Bivalentes/química , Cationes Bivalentes/metabolismo , Humanos , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/fisiología , Ionóforos/farmacología , Células Jurkat , Membrana Dobles de Lípidos/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/fisiología , Nigericina/farmacología , Compuestos Onio/química , Compuestos Onio/metabolismo , Compuestos Organofosforados/química , Cloruro de Potasio/farmacología , Ratas , Rotenona/farmacología , Radioisótopos de Rubidio/metabolismo , Compuestos de Terfenilo/química , Tritio/metabolismo , Compuestos de Tritilo/química , Compuestos de Tritilo/metabolismo , Desacopladores/farmacología
8.
Biochem J ; 383(Pt. 3): 457-68, 2004 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-15270716

RESUMEN

CPPs (cell-penetrating peptides) facilitate the cellular uptake of covalently attached oligonucleotides, proteins and other macromolecules, but the mechanism of their uptake is disputed. Two models are proposed: direct movement through the phospholipid bilayer and endocytic uptake. Mitochondria are a good model system to distinguish between these possibilities, since they have no vesicular transport systems. Furthermore, CPP-mediated delivery of macromolecules to the mitochondrial matrix would be a significant breakthrough in the study of mitochondrial function and dysfunction, and could also lead to new therapies for diseases caused by mitochondrial damage. Therefore we investigated whether two CPPs, penetratin and Tat, could act as mitochondrial delivery vectors. We also determined whether conjugation of the lipophilic cation TPP (triphenylphosphonium) to penetratin or Tat facilitated their uptake into mitochondria, since TPP leads to uptake of attached molecules into mitochondria driven by the membrane potential. Neither penetratin nor Tat, nor their TPP conjugates, are internalized by isolated mitochondria, indicating that these CPPs cannot cross mitochondrial phospholipid bilayers. Tat and TPP-Tat are taken up by cells, but they accumulate in endosomes and do not reach mitochondria. We conclude that CPPs cannot cross mitochondrial phospholipid bilayers, and therefore cannot deliver macromolecules directly to mitochondria. Our findings shed light on the mechanism of uptake of CPPs by cells. The lack of direct movement of CPPs through mitochondrial phospholipid bilayers, along with the observed endosomal accumulation of Tat and TPP-Tat in cells, makes it unlikely that CPPs enter cells by direct membrane passage, and instead favours cellular uptake via an endocytic pathway.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Cationes/química , Productos del Gen tat/química , Productos del Gen tat/metabolismo , Membranas Intracelulares/metabolismo , Lípidos/química , Mitocondrias/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/síntesis química , Cationes/metabolismo , Péptidos de Penetración Celular , Células Cultivadas , Preescolar , Circuncisión Masculina , Fibroblastos/química , Fibroblastos/metabolismo , Productos del Gen tat/síntesis química , Humanos , Metabolismo de los Lípidos , Masculino , Mitocondrias/química , Mitocondrias Hepáticas/química , Mitocondrias Hepáticas/metabolismo , Datos de Secuencia Molecular , Peso Molecular , Pene/citología , Ácidos Nucleicos de Péptidos/síntesis química , Ácidos Nucleicos de Péptidos/metabolismo , Ratas , Piel/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...