Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Biol (Weinh) ; 8(5): e2300545, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574244

RESUMEN

HapX and SreA are transcription factors that regulate the response of the fungus Aspergillus fumigatus to the availability of iron. During iron starvation, HapX represses genes involved in iron consuming pathways and upon a shift to iron excess, HapX activates these same genes. SreA blocks the expression of genes needed for iron uptake during periods of iron availability. Both proteins possess cysteine-rich regions (CRR) that are hypothesized to be necessary for the sensing of iron levels. However, the contribution of each of these domains to the function of the protein has remained unclear. Here, the ability of peptide analogs of each CRR is determined to bind an iron-sulfur cluster in vitro. UV-vis and resonance Raman (RR) spectroscopies reveal that each CRR is capable of coordinating a [2Fe-2S] cluster with comparable affinities. The iron-sulfur cluster coordinated to the CRR-B domain of HapX displays particularly high stability. The data are consistent with HapX and SreA mediating responses to cellular iron levels through the direct coordination of [2Fe-2S] clusters. The high stability of the CRR-B peptide may also find use as a starting point for the development of new green catalysts.


Asunto(s)
Cisteína , Proteínas Fúngicas , Proteínas Hierro-Azufre , Péptidos , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Cisteína/metabolismo , Cisteína/química , Péptidos/metabolismo , Péptidos/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/química , Aspergillus fumigatus/genética , Hierro/metabolismo , Unión Proteica , Espectrometría Raman , Factores de Transcripción/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética
2.
J Extracell Biol ; 2(9)2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38046436

RESUMEN

Multi-analyte liquid biopsies represent an emerging opportunity for non-invasive cancer assessment. We developed ONCE (ONe Aliquot for Circulating Elements), an approach for the isolation of extracellular vesicles (EV) and cell-free DNA (cfDNA) from a single aliquot of blood. We assessed ONCE performance to classify HER2-positive early-stage breast cancer (BrCa) patients by combining EV-associated RNA (EV-RNA) and cfDNA signals on n=64 healthy donors (HD) and non-metastatic BrCa patients. Specifically, we isolated EV-enriched samples by a charge-based (CB) method and investigated EV-RNA and cfDNA by next-generation sequencing (NGS) and by digital droplet PCR (ddPCR). Sequencing of cfDNA and EV-RNA from HER2- and HER2+ patients demonstrated concordance with in situ molecular analyses of matched tissues. Combined analysis of the two circulating analytes by ddPCR showed increased sensitivity in ERBB2/HER2 detection compared to single nucleic acid components. Multi-analyte liquid biopsy prediction performance was comparable to tissue-based sequencing results from TCGA. Also, imaging flow cytometry analysis revealed HER2 protein on the surface of EV isolated from the HER2+ BrCa plasma, thus corroborating the potential relevance of studying EV as companion analyte to cfDNA. This data confirms the relevance of combining cfDNA and EV-RNA for HER2 cancer assessment and supports the ONCE as a valuable tool for multi-analytes liquid biopsies' clinical implementation.

3.
Chembiochem ; 23(14): e202200202, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35674331

RESUMEN

Iron-sulfur clusters are thought to be ancient cofactors that could have played a role in early protometabolic systems. Thus far, redox active, prebiotically plausible iron-sulfur clusters have always contained cysteine ligands to the cluster. However, extant iron-sulfur proteins can be found to exploit other modes of binding, including ligation by histidine residues, as seen with [2Fe-2S] Rieske and MitoNEET proteins. Here, we investigated the ability of cysteine- and histidine-containing peptides to coordinate a mononuclear Fe2+ center and a [2Fe-2S] cluster and compare their properties with purified iron-sulfur proteins. The iron-sulfur peptides were characterized by UV-vis, circular dichroism, and paramagnetic NMR spectroscopies and cyclic voltammetry. Small (≤6 amino acids) peptides can coordinate [2Fe-2S] clusters through a combination of cysteine and histidine residues with similar reduction potentials as their corresponding proteins. Such complexes may have been important for early cell-like systems.


Asunto(s)
Histidina , Proteínas Hierro-Azufre , Cisteína/metabolismo , Histidina/química , Hierro/metabolismo , Proteínas Hierro-Azufre/química , Péptidos/metabolismo , Azufre/metabolismo
4.
ACS Earth Space Chem ; 6(5): 1221-1226, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35620317

RESUMEN

Wet-dry cycles driven by heating to high temperatures are frequently invoked for the prebiotic synthesis of peptides. Similarly, iron-sulfur clusters are often cited as an example of an ancient catalyst that helped prune early chemical systems into metabolic-like pathways. Because extant iron-sulfur clusters are metallocofactors of protein enzymes and nearly ubiquitous across biology, a reasonable hypothesis is that prebiotic iron-sulfur peptides formed on the early Earth. However, iron-sulfur clusters are coordinated by multiple cysteine residues, and the stability of cysteines to the heat steps of wet-dry cycles has not been determined. It, therefore, has remained unclear if the peptides needed to stabilize the formation of iron-sulfur clusters could have formed. If not, then iron-sulfur-dependent activity may have emerged later, when milder, more biological-like peptide synthesis machinery took hold. Here, we report the thermal stability of cysteine-containing peptides. We show that temperatures of 150 °C lead to the rapid degradation of cysteinyl peptides. However, the presence of Mg2+ at environmentally reasonable concentrations leads to significant protection. Thiophilic metal ions also protect against degradation at 150 °C but require concentrations not frequently observed in the environment. Nevertheless, cysteine-containing peptides are stable at lower, prebiotically plausible temperatures in seawater, carbonate lake, and ferrous lake conditions. The data are consistent with the persistence of cysteine-containing peptides on the early Earth in environments rich in metal ions. High concentrations of Mg2+ are common intra- and extra-cellularly, suggesting that the protection afforded by Mg2+ may reflect conditions that were present on the prebiotic Earth.

5.
ACS Nano ; 16(3): 4756-4774, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35239330

RESUMEN

Infections caused by drug-resistant bacteria, particularly Gram-negative organisms, are increasingly difficult to treat using antibiotics. A potential alternative is "phage therapy", in which phages infect and lyse the bacterial host. However, phage therapy poses serious drawbacks and safety concerns, such as the risk of genetic transduction of antibiotic resistance genes, inconsistent pharmacokinetics, and unknown evolutionary potential. In contrast, metallic nanoparticles possess precise, tunable properties, including efficient conversion of electronic excitation into heat. In this work, we demonstrate that engineered phage-nanomaterial conjugates that target the Gram-negative pathogen Pseudomonas aeruginosa are highly effective as a treatment of infected wounds in mice. Photothermal heating, performed as a single treatment (15 min) or as two treatments on consecutive days, rapidly reduced the bacterial load and released Zn2+ to promote wound healing. The phage-nanomaterial treatment was significantly more effective than systemic standard-of-care antibiotics, with a >10× greater reduction in bacterial load and ∼3× faster healing as measured by wound size reduction when compared to fluoroquinolone treatment. Notably, the phage-nanomaterial was also effective against a P. aeruginosa strain resistant to polymyxins, a last-line antibiotic therapy. Unlike these antibiotics, the phage-nanomaterial showed no detectable toxicity or systemic effects in mice, consistent with the short duration and localized nature of phage-nanomaterial treatment. Our results demonstrate that phage therapy controlled by inorganic nanomaterials can be a safe and effective antimicrobial strategy in vivo.


Asunto(s)
Bacteriófagos , Nanotubos , Infecciones por Pseudomonas , Infección de Heridas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Modelos Animales de Enfermedad , Oro/farmacología , Ratones , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa , Infección de Heridas/microbiología , Infección de Heridas/terapia , Zinc/farmacología , Zinc/uso terapéutico
6.
Front Cell Dev Biol ; 10: 864830, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309928

RESUMEN

Investigations of biology and the origins of life regularly focus on the components of the central dogma and thus the elements that compose nucleic acids and peptides. Less attention is given to the inorganic components of a biological cell, which are required for biological polymers to function. The Earth was and continues to be rich in metals, and so investigations of the emergence and evolution of life must account for the role that metal ions play. Evolution is shaped by what is present, and not all elements of the periodic table are equally accessible. The presence of metals, the solubility of their ions, and their intrinsic reactivity all impacted the composition of the cells that emerged. Geological and bioinformatic analyses clearly show that the suite of accessible metal ions changed over the history of the Earth; however, such analyses tend to be interpreted in comparison to average oceanic conditions, which do not represent well the many niche environments present on the Earth. While there is still debate concerning the sequence of events that led to extant biology, what is clear is that life as we know it requires metals, and that past and current metal-dependent events remain, at least partially, imprinted in the chemistry of the cell.

7.
Adv Biosyst ; 4(11): e2000118, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33107224

RESUMEN

The synthesis of serotonin and dopamine with purified enzymes is described. Both pathways start from an amino acid substrate and synthesize the monoamine neurotransmitter in two enzymatic steps. The enzymes human tryptophan hydroxylase isoform 2, Rattus norvegicus tyrosine hydroxylase, Chlamydia pneumoniae Cpn1046, and aromatic amino acid decarboxylase from Drosophila melanogaster are recombinantly expressed, purified, and shown to be functional in vitro. The hydroxylases efficiently convert L-DOPA (L-dihydroxy-phenylalanine) and 5-HTP (5-hydroxytryptophan) from L-tyrosine and L-tryptophan, respectively. A single aromatic amino acid decarboxylase is capable of converting both hydroxylated intermediates into the final neurotransmitter. The platform described here may facilitate future efforts to generate medically useful artificial cells and nanofactories.


Asunto(s)
Descarboxilasas de Aminoácido-L-Aromático , Sistema Libre de Células , Dopamina/metabolismo , Oxigenasas de Función Mixta , Serotonina/metabolismo , Animales , Descarboxilasas de Aminoácido-L-Aromático/genética , Descarboxilasas de Aminoácido-L-Aromático/aislamiento & purificación , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Sistema Libre de Células/enzimología , Sistema Libre de Células/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/aislamiento & purificación , Proteínas de Drosophila/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/aislamiento & purificación , Oxigenasas de Función Mixta/metabolismo , Ratas
8.
Life (Basel) ; 10(3)2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32110893

RESUMEN

Research on the origin of life is highly heterogeneous. After a peculiar historical development, it still includes strongly opposed views which potentially hinder progress. In the 1st Interdisciplinary Origin of Life Meeting, early-career researchers gathered to explore the commonalities between theories and approaches, critical divergence points, and expectations for the future. We find that even though classical approaches and theories-e.g. bottom-up and top-down, RNA world vs. metabolism-first-have been prevalent in origin of life research, they are ceasing to be mutually exclusive and they can and should feed integrating approaches. Here we focus on pressing questions and recent developments that bridge the classical disciplines and approaches, and highlight expectations for future endeavours in origin of life research.

9.
Chem Commun (Camb) ; 52(92): 13456-13459, 2016 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-27790655

RESUMEN

Based on UV-Vis, NMR, and EPR spectroscopies and DFT and molecular dynamics calculations, a model prebiotic [2Fe-2S] tripeptide was shown to accept and donate electrons. Duplications of the tripeptide sequence led to a protoferredoxin with increased stability. Duplications of primitive peptides may have contributed to the formation of contemporary ferredoxins.

10.
Phys Chem Chem Phys ; 18(30): 20104-8, 2016 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-27182665

RESUMEN

Model prebiotic dipeptide sequences were identified by bioinformatics and DFT and molecular dynamics calculations. The peptides were then synthesized and evaluated for metal affinity and specificity. Cysteine containing dipeptides were not associated with metal affinities that followed the Irving-Williams series but did follow the concentration trends found in seawater.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA