Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurol ; 271(8): 5478-5488, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38886208

RESUMEN

BACKGROUND: Autosomal-dominant spinocerebellar ataxia (ADCA) due to intronic GAA repeat expansion in FGF14 (SCA27B) is a recent, relatively common form of late-onset ataxia. OBJECTIVE: Here, we aimed to: (1) investigate the relative frequency of SCA27B in different clinically defined disease subgroups with late-onset ataxia collected among 16 tertiary Italian centers; (2) characterize phenotype and diagnostic findings of patients with SCA27B; (3) compare the Italian cohort with other cohorts reported in recent studies. METHODS: We screened 396 clinically diagnosed late-onset cerebellar ataxias of unknown cause, subdivided in sporadic cerebellar ataxia, ADCA, and multisystem atrophy cerebellar type. We identified 72 new genetically defined subjects with SCA27B. Then, we analyzed the clinical, neurophysiological, and imaging features of 64 symptomatic cases. RESULTS: In our cohort, the prevalence of SCA27B was 13.4% (53/396) with as high as 38.5% (22/57) in ADCA. The median age of onset of SCA27B patients was 62 years. All symptomatic individuals showed evidence of impaired balance and gait; cerebellar ocular motor signs were also frequent. Episodic manifestations at onset occurred in 31% of patients. Extrapyramidal features (17%) and cognitive impairment (25%) were also reported. Brain magnetic resonance imaging showed cerebellar atrophy in most cases (78%). Pseudo-longitudinal assessments indicated slow progression of ataxia and minimal functional impairment. CONCLUSION: Patients with SCA27B in Italy present as an adult-onset, slowly progressive cerebellar ataxia with predominant axial involvement and frequent cerebellar ocular motor signs. The high consistency of clinical features in SCA27B cohorts in multiple populations paves the way toward large-scale, multicenter studies.


Asunto(s)
Progresión de la Enfermedad , Humanos , Persona de Mediana Edad , Italia/epidemiología , Masculino , Femenino , Anciano , Estudios de Cohortes , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/epidemiología , Adulto , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/epidemiología , Ataxia Cerebelosa/diagnóstico por imagen , Ataxia Cerebelosa/fisiopatología , Edad de Inicio , Factores de Crecimiento de Fibroblastos , Degeneraciones Espinocerebelosas
2.
Neurogenetics ; 25(2): 51-67, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38334933

RESUMEN

Hereditary spastic paraparesis (HSP) is a group of central nervous system diseases primarily affecting the spinal upper motor neurons, with different inheritance patterns and phenotypes. SPG46 is a rare, early-onset and autosomal recessive HSP, linked to biallelic GBA2 mutations. About thirty families have been described worldwide, with different phenotypes like complicated HSP, recessive cerebellar ataxia or Marinesco-Sjögren Syndrome. Herein, we report five SPG46 patients harbouring five novel GBA2 mutations, the largest series described in Italy so far. Probands were enrolled in five different centres and underwent neurological examination, clinical cognitive assessment, column imaging for scoliosis assessment, ophthalmologic examination, brain imaging, GBA2 activity in peripheral blood cells and genetic testing. Their phenotype was consistent with HSP, with notable features like upper gaze palsy and movement disorders. We review demographic, genetic, biochemical and clinical information from all documented cases in the existing literature, focusing on the global distribution of cases, the features of the syndrome, its variable presentation, new potential identifying features and the significance of measuring GBA2 enzyme activity.


Asunto(s)
Glucosilceramidasa , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Glucosilceramidasa/genética , Italia , Mutación/genética , Linaje , Fenotipo , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/diagnóstico
3.
Brain ; 147(5): 1887-1898, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38193360

RESUMEN

RFC1 disease, caused by biallelic repeat expansion in RFC1, is clinically heterogeneous in terms of age of onset, disease progression and phenotype. We investigated the role of the repeat size in influencing clinical variables in RFC1 disease. We also assessed the presence and role of meiotic and somatic instability of the repeat. In this study, we identified 553 patients carrying biallelic RFC1 expansions and measured the repeat expansion size in 392 cases. Pearson's coefficient was calculated to assess the correlation between the repeat size and age at disease onset. A Cox model with robust cluster standard errors was adopted to describe the effect of repeat size on age at disease onset, on age at onset of each individual symptoms, and on disease progression. A quasi-Poisson regression model was used to analyse the relationship between phenotype and repeat size. We performed multivariate linear regression to assess the association of the repeat size with the degree of cerebellar atrophy. Meiotic stability was assessed by Southern blotting on first-degree relatives of 27 probands. Finally, somatic instability was investigated by optical genome mapping on cerebellar and frontal cortex and unaffected peripheral tissue from four post-mortem cases. A larger repeat size of both smaller and larger allele was associated with an earlier age at neurological onset [smaller allele hazard ratio (HR) = 2.06, P < 0.001; larger allele HR = 1.53, P < 0.001] and with a higher hazard of developing disabling symptoms, such as dysarthria or dysphagia (smaller allele HR = 3.40, P < 0.001; larger allele HR = 1.71, P = 0.002) or loss of independent walking (smaller allele HR = 2.78, P < 0.001; larger allele HR = 1.60; P < 0.001) earlier in disease course. Patients with more complex phenotypes carried larger expansions [smaller allele: complex neuropathy rate ratio (RR) = 1.30, P = 0.003; cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) RR = 1.34, P < 0.001; larger allele: complex neuropathy RR = 1.33, P = 0.008; CANVAS RR = 1.31, P = 0.009]. Furthermore, larger repeat expansions in the smaller allele were associated with more pronounced cerebellar vermis atrophy (lobules I-V ß = -1.06, P < 0.001; lobules VI-VII ß = -0.34, P = 0.005). The repeat did not show significant instability during vertical transmission and across different tissues and brain regions. RFC1 repeat size, particularly of the smaller allele, is one of the determinants of variability in RFC1 disease and represents a key prognostic factor to predict disease onset, phenotype and severity. Assessing the repeat size is warranted as part of the diagnostic test for RFC1 expansion.


Asunto(s)
Edad de Inicio , Proteína de Replicación C , Humanos , Masculino , Femenino , Proteína de Replicación C/genética , Adulto , Expansión de las Repeticiones de ADN/genética , Persona de Mediana Edad , Adulto Joven , Adolescente , Niño , Fenotipo , Índice de Severidad de la Enfermedad , Preescolar , Progresión de la Enfermedad
4.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38203665

RESUMEN

We describe the complex case of a 44-year-old man with polycystic kidney disease, mild cognitive impairment, and tremors in the upper limbs. Brain MRI showed lesions compatible with leukodystrophy. The diagnostic process, which included clinical exome sequencing (CES) and chromosomal microarray analysis (CMA), revealed a triple diagnosis: autosomal dominant polycystic kidney disease (ADPKD) due to a pathogenic variant, c.2152C>T-p.(Gln718Ter), in the PKD1 gene; late-onset phenylketonuria due to the presence of two missense variants, c.842C>T-p.(Pro281Leu) and c.143T>C-p.(Leu48Ser) in the PAH gene; and a 915 Kb duplication on chromosome 15. Few patients with multiple concurrent genetic diagnoses are reported in the literature; in this ADPKD patient, genome-wide analysis allowed for the diagnosis of adult-onset phenylketonuria (which would have otherwise gone unnoticed) and a 15q11.2 duplication responsible for cognitive and behavioral impairment with incomplete penetrance. This case underlines the importance of clinical genetics for interpreting complex results obtained by genome-wide techniques, and for diagnosing concurrent late-onset monogenic conditions.


Asunto(s)
Disfunción Cognitiva , Enfermedades Desmielinizantes , Discapacidad Intelectual , Trastornos del Metabolismo de los Lípidos , Enfermedades por Almacenamiento Lisosomal , Enfermedades Neurodegenerativas , Fenilcetonurias , Riñón Poliquístico Autosómico Dominante , Adulto , Masculino , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Cromosomas Humanos Par 15 , Enfermedades de Inicio Tardío
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...