Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 9(5): 1312-1324, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565896

RESUMEN

Dormant prophages protect lysogenic cells by expressing diverse immune systems, which must avoid targeting their cognate prophages upon activation. Here we report that multiple Staphylococcus aureus prophages encode Tha (tail-activated, HEPN (higher eukaryotes and prokaryotes nucleotide-binding) domain-containing anti-phage system), a defence system activated by structural tail proteins of incoming phages. We demonstrate the function of two Tha systems, Tha-1 and Tha-2, activated by distinct tail proteins. Interestingly, Tha systems can also block reproduction of the induced tha-positive prophages. To prevent autoimmunity after prophage induction, these systems are inhibited by the product of a small overlapping antisense gene previously believed to encode an excisionase. This genetic organization, conserved in S. aureus prophages, allows Tha systems to protect prophages and their bacterial hosts against phage predation and to be turned off during prophage induction, balancing immunity and autoimmunity. Our results show that the fine regulation of these processes is essential for the correct development of prophages' life cycle.


Asunto(s)
Profagos , Staphylococcus aureus , Profagos/genética , Staphylococcus aureus/virología , Staphylococcus aureus/inmunología , Autoinmunidad , Lisogenia , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/inmunología , Fagos de Staphylococcus/fisiología , Proteínas de la Cola de los Virus/genética , Proteínas de la Cola de los Virus/metabolismo , Bacteriófagos/genética , Bacteriófagos/inmunología , Bacteriófagos/fisiología
2.
Nature ; 625(7996): 797-804, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200316

RESUMEN

Prokaryotic type III CRISPR-Cas systems provide immunity against viruses and plasmids using CRISPR-associated Rossman fold (CARF) protein effectors1-5. Recognition of transcripts of these invaders with sequences that are complementary to CRISPR RNA guides leads to the production of cyclic oligoadenylate second messengers, which bind CARF domains and trigger the activity of an effector domain6,7. Whereas most effectors degrade host and invader nucleic acids, some are predicted to contain transmembrane helices without an enzymatic function. Whether and how these CARF-transmembrane helix fusion proteins facilitate the type III CRISPR-Cas immune response remains unknown. Here we investigate the role of cyclic oligoadenylate-activated membrane protein 1 (Cam1) during type III CRISPR immunity. Structural and biochemical analyses reveal that the CARF domains of a Cam1 dimer bind cyclic tetra-adenylate second messengers. In vivo, Cam1 localizes to the membrane, is predicted to form a tetrameric transmembrane pore, and provides defence against viral infection through the induction of membrane depolarization and growth arrest. These results reveal that CRISPR immunity does not always operate through the degradation of nucleic acids, but is instead mediated via a wider range of cellular responses.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Potenciales de la Membrana , Staphylococcus aureus , Bacteriófagos/inmunología , Bacteriófagos/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/inmunología , Nucleótidos Cíclicos/metabolismo , ARN Guía de Sistemas CRISPR-Cas , Sistemas de Mensajero Secundario , Staphylococcus aureus/citología , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología , Staphylococcus aureus/virología
3.
Microbiol Spectr ; 11(4): e0127723, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37404143

RESUMEN

CRISPR-Cas is an adaptive immune system that allows bacteria to inactivate mobile genetic elements. Approximately 50% of bacteria harbor CRISPR-Cas; however, in the human pathogen Staphylococcus aureus, CRISPR-Cas loci are less common and often studied in heterologous systems. We analyzed the prevalence of CRISPR-Cas in genomes of methicillin-resistant Staphylococcus aureus (MRSA) strains isolated in Denmark. Only 2.9% of the strains carried CRISPR-Cas systems, but for strains of sequence type ST630, over half were positive. All CRISPR-Cas loci were type III-A and located within the staphylococcal cassette chromosome mec (SCCmec) type V(5C2&5), conferring ß-lactam resistance. Curiously, only 23 different CRISPR spacers were identified in 69 CRISPR-Cas positive strains, and almost identical SCCmec cassettes, CRISPR arrays, and cas genes are present in staphylococcal species other than S. aureus, suggesting that these were transferred horizontally. For the ST630 strain 110900, we demonstrate that the SCCmec cassette containing CRISPR-Cas is excised from the chromosome at high frequency. However, the cassette was not transferable under the conditions investigated. One of the CRISPR spacers targets a late gene in the lytic bacteriophage phiIPLA-RODI, and we show that the system protects against phage infection by reducing phage burst size. However, CRISPR-Cas can be overloaded or circumvented by CRISPR escape mutants. Our results imply that the endogenous type III-A CRISPR-Cas system in S. aureus is active against targeted phages, albeit with low efficacy. This suggests that native S. aureus CRISPR-Cas offers only partial immunity and in nature may work in tandem with other defense systems. IMPORTANCE CRISPR-Cas is an adaptive immune system protecting bacteria and archaea against mobile genetic elements such as phages. In strains of Staphylococcus aureus, CRISPR-Cas is rare, but when present, it is located within the SCCmec element, which encodes resistance to methicillin and other ß-lactam antibiotics. We show that the element is excisable, suggesting that the CRISPR-Cas locus is transferable. In support of this, we found almost identical CRISPR-Cas-carrying SCCmec elements in different species of non-S. aureus staphylococci, indicating that the system is mobile but only rarely acquires new spacers in S. aureus. Additionally, we show that in its endogenous form, the S. aureus CRISPR-Cas is active but inefficient against lytic phages that can overload the system or form escape mutants. Thus, we propose that CRISPR-Cas in S. aureus offers only partial immunity in native systems and so may work with other defense systems to prevent phage-mediated killing.


Asunto(s)
Bacteriófagos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus/genética , Staphylococcus aureus Resistente a Meticilina/genética , Sistemas CRISPR-Cas , Bacteriófagos/genética , Staphylococcus/genética , Infecciones Estafilocócicas/microbiología , Cromosomas , Proliferación Celular , Cromosomas Bacterianos
4.
Cell ; 185(17): 3248-3262.e20, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35985290

RESUMEN

Bacteria encode sophisticated anti-phage systems that are diverse and versatile and display high genetic mobility. How this variability and mobility occurs remains largely unknown. Here, we demonstrate that a widespread family of pathogenicity islands, the phage-inducible chromosomal islands (PICIs), carry an impressive arsenal of defense mechanisms, which can be disseminated intra- and inter-generically by helper phages. These defense systems provide broad immunity, blocking not only phage reproduction, but also plasmid and non-cognate PICI transfer. Our results demonstrate that phages can mobilize PICI-encoded immunity systems to use them against other mobile genetic elements, which compete with the phages for the same bacterial hosts. Therefore, despite the cost, mobilization of PICIs may be beneficial for phages, PICIs, and bacteria in nature. Our results suggest that PICIs are important players controlling horizontal gene transfer and that PICIs and phages establish mutualistic interactions that drive bacterial ecology and evolution.


Asunto(s)
Bacteriófagos , Islas Genómicas , Bacterias/genética , Bacteriófagos/genética , Transferencia de Gen Horizontal , Sistema Inmunológico , Plásmidos
5.
Nat Microbiol ; 6(12): 1516-1525, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819640

RESUMEN

CRISPR loci are composed of short DNA repeats separated by sequences, known as spacers, that match the genomes of invaders such as phages and plasmids. Spacers are transcribed and processed to generate RNA guides used by CRISPR-associated nucleases to recognize and destroy the complementary nucleic acids of invaders. To counteract this defence, phages can produce small proteins that inhibit these nucleases, termed anti-CRISPRs (Acrs). Here we demonstrate that the ΦAP1.1 temperate phage utilizes an alternative approach to antagonize the type II-A CRISPR response in Streptococcus pyogenes. Immediately after infection, this phage expresses a small anti-CRISPR protein, AcrIIA23, that prevents Cas9 function, allowing ΦAP1.1 to integrate into the direct repeats of the CRISPR locus, neutralizing immunity. However, acrIIA23 is not transcribed during lysogeny and phage integration/excision cycles can result in the deletion and/or transduction of spacers, enabling a complex modulation of the type II-A CRISPR immune response. A bioinformatic search identified prophages integrated not only in the CRISPR repeats, but also the cas genes, of diverse bacterial species, suggesting that prophage disruption of the CRISPR-cas locus is a recurrent mechanism to counteract immunity.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Profagos/fisiología , Fagos de Streptococcus/fisiología , Streptococcus pyogenes/inmunología , Streptococcus pyogenes/virología , Lisogenia , Plásmidos/genética , Plásmidos/metabolismo , Profagos/genética , Fagos de Streptococcus/genética , Streptococcus pyogenes/genética , Integración Viral
6.
Nature ; 592(7855): 611-615, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33828299

RESUMEN

Horizontal gene transfer and mutation are the two major drivers of microbial evolution that enable bacteria to adapt to fluctuating environmental stressors1. Clustered, regularly interspaced, short palindromic repeats (CRISPR) systems use RNA-guided nucleases to direct sequence-specific destruction of the genomes of mobile genetic elements that mediate horizontal gene transfer, such as conjugative plasmids2 and bacteriophages3, thus limiting the extent to which bacteria can evolve by this mechanism. A subset of CRISPR systems also exhibit non-specific degradation of DNA4,5; however, whether and how this feature affects the host has not yet been examined. Here we show that the non-specific DNase activity of the staphylococcal type III-A CRISPR-Cas system increases mutations in the host and accelerates the generation of antibiotic resistance in Staphylococcus aureus and Staphylococcus epidermidis. These mutations require the induction of the SOS response to DNA damage and display a distinct pattern. Our results demonstrate that by differentially affecting both mechanisms that generate genetic diversity, type III-A CRISPR systems can modulate the evolution of the bacterial host.


Asunto(s)
Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/inmunología , Mutagénesis , Mutación , Staphylococcus/genética , Antibacterianos/farmacología , Bacteriófagos/clasificación , Bacteriófagos/fisiología , Proteínas Asociadas a CRISPR/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Desoxirribonucleasas/metabolismo , Farmacorresistencia Microbiana/efectos de los fármacos , Respuesta SOS en Genética/efectos de los fármacos , Staphylococcus/efectos de los fármacos , Staphylococcus/inmunología , Staphylococcus/virología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/virología , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/virología , Factores de Tiempo
7.
Nature ; 590(7847): 624-629, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33461211

RESUMEN

In the type III CRISPR-Cas immune response of prokaryotes, infection triggers the production of cyclic oligoadenylates that bind and activate proteins that contain a CARF domain1,2. Many type III loci are associated with proteins in which the CRISPR-associated Rossman fold (CARF) domain is fused to a restriction  endonuclease-like domain3,4. However, with the exception of the well-characterized Csm6 and Csx1 ribonucleases5,6, whether and how these inducible effectors provide defence is not known. Here we investigated a type III CRISPR accessory protein, which we name cyclic-oligoadenylate-activated single-stranded ribonuclease and single-stranded deoxyribonuclease 1 (Card1). Card1 forms a symmetrical dimer that has a large central cavity between its CRISPR-associated Rossmann fold and restriction endonuclease domains that binds cyclic tetra-adenylate. The binding of ligand results in a conformational change comprising the rotation of individual monomers relative to each other to form a more compact dimeric scaffold, in which a manganese cation coordinates the catalytic residues and activates the cleavage of single-stranded-but not double-stranded-nucleic acids (both DNA and RNA). In vivo, activation of Card1 induces dormancy of the infected hosts to provide immunity against phage infection and plasmids. Our results highlight the diversity of strategies used in CRISPR systems to provide immunity.


Asunto(s)
Nucleótidos de Adenina/metabolismo , Sistemas CRISPR-Cas/inmunología , ADN de Cadena Simple/metabolismo , Desoxirribonucleasas/metabolismo , Endorribonucleasas/metabolismo , Oligorribonucleótidos/metabolismo , ARN/metabolismo , Staphylococcus/enzimología , Staphylococcus/inmunología , Nucleótidos de Adenina/inmunología , Adenosina Trifosfato/metabolismo , Bacteriófagos/inmunología , Bacteriófagos/fisiología , Biocatálisis , Dominio Catalítico , Desoxirribonucleasas/química , Desoxirribonucleasas/genética , Endorribonucleasas/química , Endorribonucleasas/genética , Activación Enzimática , Ligandos , Manganeso/química , Manganeso/metabolismo , Modelos Moleculares , Oligorribonucleótidos/inmunología , Plásmidos/genética , Plásmidos/metabolismo , Multimerización de Proteína , Rotación , Staphylococcus/crecimiento & desarrollo , Staphylococcus/virología , Especificidad por Sustrato
8.
Nat Commun ; 11(1): 1596, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32221291

RESUMEN

Bacterial and archaeal CRISPR-Cas systems provide RNA-guided immunity against genetic invaders such as bacteriophages and plasmids. Upon target RNA recognition, type III CRISPR-Cas systems produce cyclic-oligoadenylate second messengers that activate downstream effectors, including Csm6 ribonucleases, via their CARF domains. Here, we show that Enteroccocus italicus Csm6 (EiCsm6) degrades its cognate cyclic hexa-AMP (cA6) activator, and report the crystal structure of EiCsm6 bound to a cA6 mimic. Our structural, biochemical, and in vivo functional assays reveal how cA6 recognition by the CARF domain activates the Csm6 HEPN domains for collateral RNA degradation, and how CARF domain-mediated cA6 cleavage provides an intrinsic off-switch to limit Csm6 activity in the absence of ring nucleases. These mechanisms facilitate rapid invader clearance and ensure termination of CRISPR interference to limit self-toxicity.


Asunto(s)
Nucleótidos de Adenina/química , Nucleótidos de Adenina/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endonucleasas/química , Endonucleasas/metabolismo , Oligorribonucleótidos/química , Oligorribonucleótidos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sistemas CRISPR-Cas , Cristalografía por Rayos X , Activación Enzimática , Modelos Moleculares , Dominios Proteicos , Estabilidad del ARN
9.
Cell Host Microbe ; 25(2): 184-194, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30763533

RESUMEN

Bacteria are under constant attack from bacteriophages (phages), bacterial parasites that are the most abundant biological entity on earth. To resist phage infection, bacteria have evolved an impressive arsenal of anti-phage systems. Recent advances have significantly broadened and deepened our understanding of how bacteria battle phages, spearheaded by new systems like CRISPR-Cas. This review aims to summarize bacterial anti-phage mechanisms, with an emphasis on the most recent developments in the field.


Asunto(s)
Bacterias/virología , Bacteriófagos/crecimiento & desarrollo , Interacciones Huésped-Parásitos , Sistemas CRISPR-Cas , Evolución Molecular
10.
Nat Microbiol ; 4(4): 656-662, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30692669

RESUMEN

Type III-A CRISPR-Cas systems employ the Cas10-Csm complex to destroy bacteriophages and plasmids, using a guide RNA to locate complementary RNA molecules from the invader and trigger an immune response that eliminates the infecting DNA. In addition, these systems possess the non-specific RNase Csm6, which provides further protection for the host. While the role of Csm6 in immunity during phage infection has been determined, how this RNase is used against plasmids is unclear. Here, we show that Staphylococcus epidermidis Csm6 is required for immunity when transcription across the plasmid target is infrequent, leading to impaired target recognition and inefficient DNA degradation by the Cas10-Csm complex. In these conditions, Csm6 causes growth arrest in the host and prevents further plasmid replication through the indiscriminate degradation of host and plasmid transcripts. In contrast, when plasmid target sequences are efficiently transcribed, Csm6 is dispensable and DNA degradation by Cas10 is sufficient for anti-plasmid immunity. Csm6 therefore provides robustness to the type III-A CRISPR-Cas immune response against difficult targets for the Cas10-Csm complex.


Asunto(s)
Sistemas CRISPR-Cas , Plásmidos/genética , Staphylococcus epidermidis/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Plásmidos/metabolismo , Ribonucleasas/genética , Ribonucleasas/inmunología , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/metabolismo
11.
Mol Cell ; 73(2): 278-290.e4, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30503774

RESUMEN

Adaptive immune systems must accurately distinguish between self and non-self in order to defend against invading pathogens while avoiding autoimmunity. Type III CRISPR-Cas systems employ guide RNA to recognize complementary RNA targets, which triggers the degradation of both the invader's transcripts and their template DNA. These systems can broadly eliminate foreign targets with multiple mutations but circumvent damage to the host genome. To explore the molecular basis for these features, we use single-molecule fluorescence microscopy to study the interaction between a type III-A ribonucleoprotein complex and various RNA substrates. We find that Cas10-the DNase effector of the complex-displays rapid conformational fluctuations on foreign RNA targets, but is locked in a static configuration on self RNA. Target mutations differentially modulate Cas10 dynamics and tune the CRISPR interference activity in vivo. These findings highlight the central role of the internal dynamics of CRISPR-Cas complexes in self versus non-self discrimination and target specificity.


Asunto(s)
Autoinmunidad , Proteínas Bacterianas/inmunología , Proteínas Asociadas a CRISPR/inmunología , Sistemas CRISPR-Cas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , ARN Bacteriano/inmunología , Autotolerancia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/inmunología , Cinética , Microscopía Fluorescente , Mutación , Conformación de Ácido Nucleico , Conformación Proteica , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Transducción de Señal , Imagen Individual de Molécula/métodos , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología , Staphylococcus epidermidis/enzimología , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/inmunología , Relación Estructura-Actividad
12.
Nature ; 548(7669): 543-548, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28722012

RESUMEN

In many prokaryotes, type III clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated (Cas) systems detect and degrade invasive genetic elements by an RNA-guided, RNA-targeting multisubunit interference complex. The CRISPR-associated protein Csm6 additionally contributes to interference by functioning as a standalone RNase that degrades invader RNA transcripts, but the mechanism linking invader sensing to Csm6 activity is not understood. Here we show that Csm6 proteins are activated through a second messenger generated by the type III interference complex. Upon target RNA binding by the interference complex, its Cas10 subunit converts ATP into a cyclic oligoadenylate product, which allosterically activates Csm6 by binding to its CRISPR-associated Rossmann fold (CARF) domain. CARF domain mutations that abolish allosteric activation inhibit Csm6 activity in vivo, and mutations in the Cas10 Palm domain phenocopy loss of Csm6. Together, these results point to an unprecedented mechanism for regulation of CRISPR interference that bears striking conceptual similarity to oligoadenylate signalling in mammalian innate immunity.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas de Mensajero Secundario/genética , Sistemas de Mensajero Secundario/fisiología , Regulación Alostérica , Difusión , Activación Enzimática , Euryarchaeota/enzimología , Euryarchaeota/genética , Inmunidad Innata , Dominios Proteicos/genética , Ribonucleasas/metabolismo , Thermus thermophilus/enzimología , Thermus thermophilus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...