Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Res Sq ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38947019

RESUMEN

Background . Interactions among tumor, immune, and vascular niches play major roles in driving glioblastoma (GBM) malignancy and treatment responses. The composition, heterogeneity, and localization of extracellular core matrix proteins (CMPs) that mediate such interactions, however, are not well understood. Methods . Here, through computational genomics and proteomics approaches, we analyzed the functional and clinical relevance of CMP expression in GBM at bulk, single cell, and spatial anatomical resolution. Results . We identified genes encoding CMPs whose expression levels categorize GBM tumors into CMP expression-high (M-H) and CMP expression-low (M-L) groups. CMP enrichment is associated with worse patient survival, specific driver oncogenic alterations, mesenchymal state, infiltration of pro-tumor immune cells, and immune checkpoint gene expression. Anatomical and single-cell transcriptome analyses indicate that matrisome gene expression is enriched in vascular and leading edge/infiltrative niches that are known to harbor glioma stem cells driving GBM progression. Finally, we identified a 17-gene CMP expression signature, termed Matrisome 17 (M17) signature that further refines the prognostic value of CMP genes. The M17 signature is a significantly stronger prognostic factor compared to MGMT promoter methylation status as well as canonical subtypes, and importantly, potentially predicts responses to PD1 blockade. Conclusion . The matrisome gene expression signature provides a robust stratification of GBM patients by survival and potential biomarkers of functionally relevant GBM niches that can mediate mesenchymal-immune cross talk. Patient stratification based on matrisome profiles can contribute to selection and optimization of treatment strategies.

2.
Mol Oncol ; 18(3): 517-527, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37507199

RESUMEN

TWIST1 (TW) is a pro-oncogenic basic helix-loop-helix (bHLH) transcription factor and promotes the hallmark features of malignancy (e.g., cell invasion, cancer cell stemness, and treatment resistance), which contribute to poor prognoses of glioblastoma (GBM). We previously reported that specific TW dimerization motifs regulate unique cellular phenotypes in GBM. For example, the TW:E12 heterodimer increases periostin (POSTN) expression and promotes cell invasion. TW dimer-specific transcriptional regulation requires binding to the regulatory E-box consensus sequences, but alternative bHLH dimers that balance TW dimer activity in regulating pro-oncogenic TW target genes are unknown. We leveraged the ENCODE DNase I hypersensitivity data to identify E-box sites and tethered TW:E12 and TW:TW proteins to validate dimer binding to E-boxes in vitro. Subsequently, TW knockdown revealed a novel TCF4:TCF12 bHLH dimer occupying the same TW E-box site that, when expressed as a tethered TCF4:TCF12 dimer, markedly repressed POSTN expression and extended animal survival. These observations support TCF4:TCF12 as a novel dimer with tumor-suppressor activity in GBM that functions in part through displacement of and/or competitive inhibition of pro-oncogenic TW dimers at E-box sites.


Asunto(s)
Glioblastoma , Animales , Glioblastoma/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica , Dimerización
3.
Res Sq ; 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37790408

RESUMEN

Interactions among tumor, immune and vascular niches play major roles in driving glioblastoma (GBM) malignancy and treatment responses. The composition, heterogeneity, and localization of extracellular core matrix proteins (CMPs) that mediate such interactions, however, are not well understood. Here, we characterize functional and clinical relevance of genes encoding CMPs in GBM at bulk, single cell, and spatial anatomical resolution. We identify a "matrix code" for genes encoding CMPs whose expression levels categorize GBM tumors into matrisome-high and matrisome-low groups that correlate with worse and better patient survival, respectively. The matrisome enrichment is associated with specific driver oncogenic alterations, mesenchymal state, infiltration of pro-tumor immune cells and immune checkpoint gene expression. Anatomical and single cell transcriptome analyses indicate that matrisome gene expression is enriched in vascular and leading edge/infiltrative anatomic structures that are known to harbor glioma stem cells driving GBM progression. Finally, we identified a 17-gene matrisome signature that retains and further refines the prognostic value of genes encoding CMPs and, importantly, potentially predicts responses to PD1 blockade in clinical trials for GBM. The matrisome gene expression profiles provide potential biomarkers of functionally relevant GBM niches that contribute to mesenchymal-immune cross talk and patient stratification which could be applied to optimize treatment responses.

4.
bioRxiv ; 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37333072

RESUMEN

Interactions among tumor, immune and vascular niches play major roles in driving glioblastoma (GBM) malignancy and treatment responses. The composition, heterogeneity, and localization of extracellular core matrix proteins (CMPs) that mediate such interactions, however, are not well understood. Here, we characterize functional and clinical relevance of genes encoding CMPs in GBM at bulk, single cell, and spatial anatomical resolution. We identify a "matrix code" for genes encoding CMPs whose expression levels categorize GBM tumors into matrisome-high and matrisome-low groups that correlate with worse and better survival, respectively, of patients. The matrisome enrichment is associated with specific driver oncogenic alterations, mesenchymal state, infiltration of pro-tumor immune cells and immune checkpoint gene expression. Anatomical and single cell transcriptome analyses indicate that matrisome gene expression is enriched in vascular and leading edge/infiltrative anatomic structures that are known to harbor glioma stem cells driving GBM progression. Finally, we identified a 17-gene matrisome signature that retains and further refines the prognostic value of genes encoding CMPs and, importantly, potentially predicts responses to PD1 blockade in clinical trials for GBM. The matrisome gene expression profiles may provide biomarkers of functionally relevant GBM niches that contribute to mesenchymal-immune cross talk and patient stratification to optimize treatment responses.

5.
J Vis Exp ; (193)2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37067267

RESUMEN

The overall goal of this procedure is to perform stereotaxy in the pig brain with real-time magnetic resonance (MR) visualization guidance to provide precise infusions. The subject was positioned prone in the MR bore for optimal access to the top of the skull with the torso raised, the neck flexed, and the head inclined downward. Two anchor pins anchored on the bilateral zygoma held the head steady using the head holder. A magnetic resonance imaging (MRI) flex-coil was placed rostrally across the head holder so that the skull was accessible for the intervention procedure. A planning grid placed on the scalp was used to determine the appropriate entry point of the cannula. The stereotactic frame was secured and aligned iteratively through software projection until the projected radial error was less than 0.5 mm. A hand drill was used to create a burr hole for insertion of the cannula. A gadolinium-enhanced co-infusion was used to visualize the infusion of a cell suspension. Repeated T1-weighted MRI scans were registered in real time during the agent delivery process to visualize the volume of gadolinium distribution. MRI-guided stereotaxy allows for precise and controlled infusion into the pig brain, with concurrent monitoring of cannula insertion accuracy and determination of the agent volume of distribution.


Asunto(s)
Encéfalo , Gadolinio , Animales , Porcinos , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Técnicas Estereotáxicas , Espectroscopía de Resonancia Magnética
6.
J Neurosurg Case Lessons ; 5(5)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36718868

RESUMEN

BACKGROUND: Leptomeningeal carcinomatosis is a rare feature of metastasis that is characterized by thickening and increased contrast enhancement throughout the meninges of the central nervous system (CNS). Leptomeningeal disease (LMD) can occur as spread from primary CNS tumors or as a manifestation of metastasis to the CNS from primary tumor sites outside the CNS. Leptomeningeal disease is, however, rare in cervical cancer, in which metastasis occurs typically from local invasion. OBSERVATIONS: The authors discuss the case of CNS metastasis with LMD from the rare neuroendocrine carcinoma of the cervix (NECC). Cervical cancer infrequently metastasizes to the CNS, but NECC is an aggressive variant with greater metastatic potential. Many of these patients will have previously received pelvic radiation, limiting their candidacy for craniospinal radiation for LMD treatment due to field overlap. This illustrative case documents the first known case of NECC CNS metastasis accompanied by LMD treated with intrathecal chemotherapy. LESSONS: Reported is the first known case of NECC with CNS metastasis accompanied by LMD. The authors highlight the potentially critical role of intrathecal chemotherapy, in addition to radiotherapy, in treating leptomeningeal metastasis from cervical cancer.

7.
J Neurosurg Case Lessons ; 4(22)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443958

RESUMEN

BACKGROUND: Metastatic cancer may involve the central and peripheral nervous system, usually in the late stages of disease. At this point, most patients have been diagnosed and treated for widespread systemic disease. Rarely is the involvement of the peripheral nervous system the presenting manifestation of malignancy. One reason for this is a proposed "blood-nerve barrier" that renders the nerve sheath a relatively privileged site for metastases. OBSERVATIONS: The authors presented a novel case of metastatic melanoma presenting as intractable leg pain and numbness. Further workup revealed concurrent disease in the brain and breast, prompting urgent treatment with radiation and targeted immunotherapy. LESSONS: This case highlights the rare presentation of metastatic melanoma as a mononeuropathy. Although neurological complications of metastases tend to occur in later stages of disease after initial diagnosis and treatment, one must remember to consider malignancy in the initial differential diagnosis of mononeuropathy.

8.
Cancers (Basel) ; 13(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34680264

RESUMEN

New strategies that improve median survivals of only ~15-20 months for glioblastoma (GBM) with the current standard of care (SOC) which is concurrent temozolomide (TMZ) and radiation (XRT) treatment are urgently needed. Inhibition of polo-like kinase 1 (PLK1), a multifunctional cell cycle regulator, overexpressed in GBM has shown therapeutic promise but has never been tested in the context of SOC. Therefore, we examined the mechanistic and therapeutic impact of PLK1 specific inhibitor (volasertib) alone and in combination with TMZ and/or XRT on GBM cells. We quantified the effects of volasertib alone and in combination with TMZ and/or XRT on GBM cell cytotoxicity/apoptosis, mitochondrial membrane potential (MtMP), reactive oxygen species (ROS), cell cycle, stemness, DNA damage, DNA repair genes, cellular signaling and in-vivo tumor growth. Volasertib alone and in combination with TMZ and/or XRT promoted apoptotic cell death, altered MtMP, increased ROS and G2/M cell cycle arrest. Combined volasertib and TMZ treatment reduced side population (SP) indicating activity against GBM stem-like cells. Volasertib combinatorial treatment also significantly increased DNA damage and reduced cell survival by inhibition of DNA repair gene expression and modulation of ERK/MAPK, AMPK and glucocorticoid receptor signaling. Finally, as observed in-vitro, combined volasertib and TMZ treatment resulted in synergistic inhibition of tumor growth in-vivo. Together these results identify new mechanisms of action for volasertib that provide a strong rationale for further investigation of PLK1 inhibition as an adjunct to current GBM SOC therapy.

9.
Anticancer Res ; 41(3): 1445-1449, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33788736

RESUMEN

BACKGROUND: Limited brain metastasis is treated definitively with stereotactic radiosurgery when surgical resection is not indicated. Although this has historically been performed in a single fraction, multi-fraction approaches such as fraction radiosurgery (FSRS) and staged radiosurgery (SSRS) have been recently examined as alternative approaches for larger lesions to permit better tumor control without increased toxicity. CASE REPORT: We present the case of a patient who developed symptomatic radionecrosis in two brain metastasis, 2.3 cm and 2.1 cm in size, which were treated with 18 Gy in one fraction, but no radionecrosis in a 3.3 cm lesion treated in two fractions of 15 Gy nor in two punctate lesions that were treated in one fraction of 20 Gy. Although she did not respond to steroids, she responded to bevacizumab symptomatically and on neuroimaging. CONCLUSION: Congruent with other recent studies, our report suggests that large brain metastasis should be considered for FSRS/SSRS.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Encéfalo/efectos de la radiación , Fraccionamiento de la Dosis de Radiación , Radiocirugia/métodos , Adulto , Antineoplásicos Inmunológicos/uso terapéutico , Bevacizumab/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Femenino , Humanos , Necrosis/radioterapia , Resultado del Tratamiento
10.
Nanoscale ; 12(46): 23838-23850, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33237080

RESUMEN

Intratumoral drug delivery is a promising approach for the treatment of glioblastoma multiforme (GBM). However, drug washout remains a major challenge in GBM therapy. Our strategy, aimed at reducing drug clearance and enhancing site-specific residence time, involves the local administration of a multi-component system comprised of nanoparticles (NPs) embedded within a thermosensitive hydrogel (HG). Herein, our objective was to examine the distribution of NPs and their cargo following intratumoral administration of this system in GBM. We hypothesized that the HG matrix, which undergoes rapid gelation upon increases in temperature, would contribute towards heightened site-specific retention and permanence of NPs in tumors. BODIPY-containing, infrared dye-labeled polymeric NPs embedded in a thermosensitive HG (HG-NPs) were fabricated and characterized. Retention and distribution dynamics were subsequently examined over time in orthotopic GBM-bearing mice. Results demonstrate that the HG-NPs system significantly improved site-specific, long-term retention of both NPs and BODIPY, with co-localization analyses showing that HG-NPs covered larger areas of the tumor and the peri-tumor region at later time points. Moreover, NPs released from the HG were shown to undergo uptake by surrounding GBM cells. Findings suggest that intratumoral delivery with HG-NPs has immense potential for GBM treatment, as well as other strategies where site-specific, long-term retention of therapeutic agents is warranted.


Asunto(s)
Glioblastoma , Nanopartículas , Animales , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Glioblastoma/tratamiento farmacológico , Hidrogeles/uso terapéutico , Inyecciones Intralesiones , Ratones
13.
Cancers (Basel) ; 11(9)2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31540485

RESUMEN

Diffuse invasion into adjacent brain matter by glioblastoma (GBM) is largely responsible for their dismal prognosis. Previously, we showed that the TWIST1 (TW) bHLH transcription factor and its regulated gene periostin (POSTN) promote invasive phenotypes of GBM cells. Since TW functional effects are regulated by phosphorylation and dimerization, we investigated how phosphorylation of serine 68 in TW regulates TW dimerization, POSTN expression, and invasion in glioma cells. Compared with wild-type TW, the hypophosphorylation mutant, TW(S68A), impaired TW heterodimerization with the E12 bHLH transcription factor and cell invasion in vitro but had no effect on TW homodimerization. Overexpression of TW:E12 forced dimerization constructs (FDCs) increased glioma cell invasion and upregulated pro-invasive proteins, including POSTN, in concert with cytoskeletal reorganization. By contrast, TW:TW homodimer FDCs inhibited POSTN expression and cell invasion in vitro. Further, phosphorylation of analogous PXSP phosphorylation sites in TW:E12 FDCs (TW S68 and E12 S139) coordinately regulated POSTN and PDGFRa mRNA expression. These results suggested that TW regulates pro-invasive phenotypes in part through coordinated phosphorylation events in TW and E12 that promote heterodimer formation and regulate downstream targets. This new mechanistic understanding provides potential therapeutic strategies to inhibit TW-POSTN signaling in GBM and other cancers.

15.
Cureus ; 11(11): e6161, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31890369

RESUMEN

Introduction Stereotactic radiosurgery (SRS) is effective and safe for the treatment of the vast majority of brain metastases (BMs). SRS is increasingly used for the simultaneous treatment of multiple lesions, retreatment of recurrence, or subsequent treatment of new lesions. Although radiation injury is relatively uncommon, with the increased utilization of SRS, it is imperative to develop approaches to assess and mitigate radiation-induced neurologic toxicity. Multiple factors influence the development of radiation injury, including patient age, genomic variations, prior treatment, dose and volume treated, and anatomic location. Functional neural structure proximity to SRS targets is a critical factor in developing a systematic integrated risk assessment for SRS patients. Methods We developed an approach for risk assessment based on the combinatorial application of i) the anatomic localization of target lesions using a reference neuroanatomical/functional imaging atlas merged with patient-specific imaging and ii) validation with functional MRI (fMRI) and diffusion tensor imaging MRI (DTI-MRI) to identify neural tracts. Results In the case of a thalamic/midbrain junction breast carcinoma metastasis, the reference image analysis revealed proximity to the corticospinal tract (CST), which was validated by functional DTI-MRI. Dose-volume exposure of the CST could be estimated and considered in the development of a final treatment plan. Conclusion Merging pretreatment MR imaging with neuroanatomical/functional reference MRIs and subsequent validation with fMRI or DTI-MRI may prove to be a valuable approach to screen for neural risks in individual SRS patients. Incorporating this approach in larger studies could further our understanding of dose tolerances in a broad range of neural structures.

16.
Mol Oncol ; 12(7): 1188-1202, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29754406

RESUMEN

TWIST1 (TW) is a bHLH transcription factor (TF) and master regulator of the epithelial-to-mesenchymal transition (EMT). In vitro, TW promotes mesenchymal change, invasion, and self-renewal in glioblastoma (GBM) cells. However, the potential therapeutic relevance of TW has not been established through loss-of-function studies in human GBM cell xenograft models. The effects of TW loss of function (gene editing and knockdown) on inhibition of tumorigenicity of U87MG and GBM4 glioma stem cells were tested in orthotopic xenograft models and conditional knockdown in established flank xenograft tumors. RNAseq and the analysis of tumors investigated putative TW-associated mechanisms. Multiple bioinformatic tools revealed significant alteration of ECM, membrane receptors, signaling transduction kinases, and cytoskeleton dynamics leading to identification of PI3K/AKT signaling. We experimentally show alteration of AKT activity and periostin (POSTN) expression in vivo and/or in vitro. For the first time, we show that effect of TW knockout inhibits AKT activity in U87MG cells in vivo independent of PTEN mutation. The clinical relevance of TW and candidate mechanisms was established by analysis of the TCGA and ENCODE databases. TW expression was associated with decreased patient survival and LASSO regression analysis identified POSTN as one of top targets of TW in human GBM. While we previously demonstrated the role of TW in promoting EMT and invasion of glioma cells, these studies provide direct experimental evidence supporting protumorigenic role of TW independent of invasion in vivo and the therapeutic relevance of targeting TW in human GBM. Further, the role of TW driving POSTN expression and AKT signaling suggests actionable targets, which could be leveraged to mitigate the oncogenic effects of TW in GBM.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/metabolismo , Glioblastoma/patología , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Neoplasias Encefálicas/genética , Carcinogénesis/genética , Carcinogénesis/patología , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Edición Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glioblastoma/genética , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteínas Nucleares/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Análisis de Supervivencia , Proteína 1 Relacionada con Twist/genética
17.
Neurosurgery ; 83(3): 403-415, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29126120

RESUMEN

BACKGROUND: Chordomas are rare but challenging neoplasms involving the skull base. A preoperative grading system will be useful to identify both areas for treatment and risk factors, and correlate to the degree of resection, complications, and recurrence. OBJECTIVE: To propose a new grading system for cranial chordomas designed by the senior author. Its purpose is to enable comparison of different tumors with a similar pathology to clivus chordoma, and statistically correlate with postoperative outcomes. METHODS: The numerical grading system included tumor size, site of the tumor, vascular encasement, intradural extension, brainstem invasion, and recurrence of the tumor either after surgery or radiotherapy with a range of 2 to 25 points; it was used in 42 patients with cranial chordoma. The grading system was correlated with number of operations for resection, degree of resection, number and type of complications, recurrence, and survival. RESULTS: We found 3 groups: low-risk 0 to 7 points, intermediate-risk 8 to 12 points, and high-risk ≥13 points in the grading system. The 3 groups were correlated with the following: extent of resection (partial, subtotal, or complete; P < .002); number of operative stages to achieve removal (P < .014); tumor recurrence (P = .03); postoperative Karnofsky Performance Status (P < .001); and with successful outcome (P = .005). The grading system itself correlated with the outcome (P = .005). CONCLUSION: The proposed chordoma grading system can help surgeons to predict the difficulty of the case and know which areas of the skull base will need attention to plan further therapy.


Asunto(s)
Cordoma/patología , Clasificación del Tumor/métodos , Neoplasias de la Base del Cráneo/patología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
18.
PLoS One ; 12(3): e0172884, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28264064

RESUMEN

Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.


Asunto(s)
Neoplasias Encefálicas/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Canales Iónicos/genética , Células Madre Neoplásicas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Análisis por Conglomerados , Uniones Comunicantes/genética , Uniones Comunicantes/metabolismo , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/terapia , Humanos , Canales Iónicos/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Pronóstico , Transducción de Señal , Análisis de Supervivencia , Transcriptoma , Resultado del Tratamiento
19.
Oncotarget ; 8(64): 107716-107729, 2017 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-29296200

RESUMEN

Twist1 is a master regulator of epithelial mesenchymal transition and carcinoma metastasis. Twist1 has also been associated with increased malignancy of human glioma. However, the impact of inhibiting Twist1 on tumorigenicity has not been characterized in glioma models in the context of different oncogenic transformation paradigms. Here we used an orthotopic mouse glioma model of transplanted transformed neural progenitor cells (NPCs) to demonstrate the effects of Twist1 loss of function on tumorigenicity. Decreased tumorigenicity was observed after shRNA mediated Twist knockdown in HPV E6/7 Ha-RasV12 transformed NPCs and Cre mediated Twist1 deletion in Twist1 fl/fl NPCs transformed by p53 knockdown and Ha-RasV12 expression. By contrast, Twist1 deletion had no effect on tumorigenicity of NPCs transformed by co-expression of Akt and Ha-RasV12. We demonstrated a dramatic off-target effect of Twist1 deletion with constitutive Cre expression, which was completely reversed when Twist1 deletion was achieved by transient administration of recombinant Cre protein. Together these findings demonstrate that the function of Twist1 in these models is highly dependent on specific oncogenic contexts of NPC transformation. Therefore, the driver mutational context in which Twist1 functions may need to be taken into account when evaluating mechanisms of action and developing therapeutic approaches to target Twist1 in human gliomas.

20.
PLoS Genet ; 12(7): e1006162, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27428049

RESUMEN

Malignant tumors shed DNA into the circulation. The transient half-life of circulating tumor DNA (ctDNA) may afford the opportunity to diagnose, monitor recurrence, and evaluate response to therapy solely through a non-invasive blood draw. However, detecting ctDNA against the normally occurring background of cell-free DNA derived from healthy cells has proven challenging, particularly in non-metastatic solid tumors. In this study, distinct differences in fragment length size between ctDNAs and normal cell-free DNA are defined. Human ctDNA in rat plasma derived from human glioblastoma multiforme stem-like cells in the rat brain and human hepatocellular carcinoma in the rat flank were found to have a shorter principal fragment length than the background rat cell-free DNA (134-144 bp vs. 167 bp, respectively). Subsequently, a similar shift in the fragment length of ctDNA in humans with melanoma and lung cancer was identified compared to healthy controls. Comparison of fragment lengths from cell-free DNA between a melanoma patient and healthy controls found that the BRAF V600E mutant allele occurred more commonly at a shorter fragment length than the fragment length of the wild-type allele (132-145 bp vs. 165 bp, respectively). Moreover, size-selecting for shorter cell-free DNA fragment lengths substantially increased the EGFR T790M mutant allele frequency in human lung cancer. These findings provide compelling evidence that experimental or bioinformatic isolation of a specific subset of fragment lengths from cell-free DNA may improve detection of ctDNA.


Asunto(s)
ADN de Neoplasias/sangre , ADN de Neoplasias/genética , Alelos , Animales , Biomarcadores de Tumor/sangre , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Glioblastoma/sangre , Glioblastoma/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Imagen por Resonancia Magnética , Masculino , Melanoma/genética , Melanoma/metabolismo , Mutación , Trasplante de Neoplasias , Proteínas Proto-Oncogénicas B-raf/genética , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...