Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Genome Biol ; 25(1): 172, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951922

RESUMEN

BACKGROUND: Computational variant effect predictors offer a scalable and increasingly reliable means of interpreting human genetic variation, but concerns of circularity and bias have limited previous methods for evaluating and comparing predictors. Population-level cohorts of genotyped and phenotyped participants that have not been used in predictor training can facilitate an unbiased benchmarking of available methods. Using a curated set of human gene-trait associations with a reported rare-variant burden association, we evaluate the correlations of 24 computational variant effect predictors with associated human traits in the UK Biobank and All of Us cohorts. RESULTS: AlphaMissense outperformed all other predictors in inferring human traits based on rare missense variants in UK Biobank and All of Us participants. The overall rankings of computational variant effect predictors in these two cohorts showed a significant positive correlation. CONCLUSION: We describe a method to assess computational variant effect predictors that sidesteps the limitations of previous evaluations. This approach is generalizable to future predictors and could continue to inform predictor choice for personal and clinical genetics.


Asunto(s)
Benchmarking , Variación Genética , Humanos , Fenotipo , Biología Computacional/métodos , Genotipo
2.
ArXiv ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38699161

RESUMEN

Computational methods for assessing the likely impacts of mutations, known as variant effect predictors (VEPs), are widely used in the assessment and interpretation of human genetic variation, as well as in other applications like protein engineering. Many different VEPs have been released to date, and there is tremendous variability in their underlying algorithms and outputs, and in the ways in which the methodologies and predictions are shared. This leads to considerable challenges for end users in knowing which VEPs to use and how to use them. Here, to address these issues, we provide guidelines and recommendations for the release of novel VEPs. Emphasising open-source availability, transparent methodologies, clear variant effect score interpretations, standardised scales, accessible predictions, and rigorous training data disclosure, we aim to improve the usability and interpretability of VEPs, and promote their integration into analysis and evaluation pipelines. We also provide a large, categorised list of currently available VEPs, aiming to facilitate the discovery and encourage the usage of novel methods within the scientific community.

3.
Genome Biol ; 25(1): 100, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641812

RESUMEN

Multiplexed assays of variant effect (MAVEs) have emerged as a powerful approach for interrogating thousands of genetic variants in a single experiment. The flexibility and widespread adoption of these techniques across diverse disciplines have led to a heterogeneous mix of data formats and descriptions, which complicates the downstream use of the resulting datasets. To address these issues and promote reproducibility and reuse of MAVE data, we define a set of minimum information standards for MAVE data and metadata and outline a controlled vocabulary aligned with established biomedical ontologies for describing these experimental designs.


Asunto(s)
Metadatos , Proyectos de Investigación , Reproducibilidad de los Resultados
4.
Genome Biol ; 25(1): 98, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627865

RESUMEN

BACKGROUND: Amino acid substitutions can perturb protein activity in multiple ways. Understanding their mechanistic basis may pinpoint how residues contribute to protein function. Here, we characterize the mechanisms underlying variant effects in human glucokinase (GCK) variants, building on our previous comprehensive study on GCK variant activity. RESULTS: Using a yeast growth-based assay, we score the abundance of 95% of GCK missense and nonsense variants. When combining the abundance scores with our previously determined activity scores, we find that 43% of hypoactive variants also decrease cellular protein abundance. The low-abundance variants are enriched in the large domain, while residues in the small domain are tolerant to mutations with respect to abundance. Instead, many variants in the small domain perturb GCK conformational dynamics which are essential for appropriate activity. CONCLUSIONS: In this study, we identify residues important for GCK metabolic stability and conformational dynamics. These residues could be targeted to modulate GCK activity, and thereby affect glucose homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucoquinasa , Humanos , Sustitución de Aminoácidos , Diabetes Mellitus Tipo 2/genética , Glucoquinasa/genética , Glucoquinasa/química , Glucoquinasa/metabolismo , Mutación
5.
Bioinformatics ; 40(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38569896

RESUMEN

MOTIVATION: Long-read sequencing technologies, an attractive solution for many applications, often suffer from higher error rates. Alignment of multiple reads can improve base-calling accuracy, but some applications, e.g. sequencing mutagenized libraries where multiple distinct clones differ by one or few variants, require the use of barcodes or unique molecular identifiers. Unfortunately, sequencing errors can interfere with correct barcode identification, and a given barcode sequence may be linked to multiple independent clones within a given library. RESULTS: Here we focus on the target application of sequencing mutagenized libraries in the context of multiplexed assays of variant effects (MAVEs). MAVEs are increasingly used to create comprehensive genotype-phenotype maps that can aid clinical variant interpretation. Many MAVE methods use long-read sequencing of barcoded mutant libraries for accurate association of barcode with genotype. Existing long-read sequencing pipelines do not account for inaccurate sequencing or nonunique barcodes. Here, we describe Pacybara, which handles these issues by clustering long reads based on the similarities of (error-prone) barcodes while also detecting barcodes that have been associated with multiple genotypes. Pacybara also detects recombinant (chimeric) clones and reduces false positive indel calls. In three example applications, we show that Pacybara identifies and correctly resolves these issues. AVAILABILITY AND IMPLEMENTATION: Pacybara, freely available at https://github.com/rothlab/pacybara, is implemented using R, Python, and bash for Linux. It runs on GNU/Linux HPC clusters via Slurm, PBS, or GridEngine schedulers. A single-machine simplex version is also available.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biblioteca de Genes , Genotipo , Análisis por Conglomerados
7.
bioRxiv ; 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37732209

RESUMEN

Widespread sequencing has yielded thousands of missense variants predicted or confirmed as disease-causing. This creates a new bottleneck: determining the functional impact of each variant - largely a painstaking, customized process undertaken one or a few genes or variants at a time. Here, we established a high-throughput imaging platform to assay the impact of coding variation on protein localization, evaluating 3,547 missense variants of over 1,000 genes and phenotypes. We discovered that mislocalization is a common consequence of coding variation, affecting about one-sixth of all pathogenic missense variants, all cellular compartments, and recessive and dominant disorders alike. Mislocalization is primarily driven by effects on protein stability and membrane insertion rather than disruptions of trafficking signals or specific interactions. Furthermore, mislocalization patterns help explain pleiotropy and disease severity and provide insights on variants of unknown significance. Our publicly available resource will likely accelerate the understanding of coding variation in human diseases.

8.
Am J Hum Genet ; 110(10): 1769-1786, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37729906

RESUMEN

Defects in hydroxymethylbilane synthase (HMBS) can cause acute intermittent porphyria (AIP), an acute neurological disease. Although sequencing-based diagnosis can be definitive, ∼⅓ of clinical HMBS variants are missense variants, and most clinically reported HMBS missense variants are designated as "variants of uncertain significance" (VUSs). Using saturation mutagenesis, en masse selection, and sequencing, we applied a multiplexed validated assay to both the erythroid-specific and ubiquitous isoforms of HMBS, obtaining confident functional impact scores for >84% of all possible amino acid substitutions. The resulting variant effect maps generally agreed with biochemical expectations and provide further evidence that HMBS can function as a monomer. Additionally, the maps implicated specific residues as having roles in active site dynamics, which was further supported by molecular dynamics simulations. Most importantly, these maps can help discriminate pathogenic from benign HMBS variants, proactively providing evidence even for yet-to-be-observed clinical missense variants.


Asunto(s)
Hidroximetilbilano Sintasa , Porfiria Intermitente Aguda , Humanos , Hidroximetilbilano Sintasa/química , Hidroximetilbilano Sintasa/genética , Hidroximetilbilano Sintasa/metabolismo , Mutación Missense/genética , Porfiria Intermitente Aguda/diagnóstico , Porfiria Intermitente Aguda/genética , Sustitución de Aminoácidos , Simulación de Dinámica Molecular
9.
ArXiv ; 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37426450

RESUMEN

Multiplexed Assays of Variant Effect (MAVEs) have emerged as a powerful approach for interrogating thousands of genetic variants in a single experiment. The flexibility and widespread adoption of these techniques across diverse disciplines has led to a heterogeneous mix of data formats and descriptions, which complicates the downstream use of the resulting datasets. To address these issues and promote reproducibility and reuse of MAVE data, we define a set of minimum information standards for MAVE data and metadata and outline a controlled vocabulary aligned with established biomedical ontologies for describing these experimental designs.

10.
Mol Cell ; 83(15): 2792-2809.e9, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37478847

RESUMEN

To maintain genome integrity, cells must accurately duplicate their genome and repair DNA lesions when they occur. To uncover genes that suppress DNA damage in human cells, we undertook flow-cytometry-based CRISPR-Cas9 screens that monitored DNA damage. We identified 160 genes whose mutation caused spontaneous DNA damage, a list enriched in essential genes, highlighting the importance of genomic integrity for cellular fitness. We also identified 227 genes whose mutation caused DNA damage in replication-perturbed cells. Among the genes characterized, we discovered that deoxyribose-phosphate aldolase DERA suppresses DNA damage caused by cytarabine (Ara-C) and that GNB1L, a gene implicated in 22q11.2 syndrome, promotes biogenesis of ATR and related phosphatidylinositol 3-kinase-related kinases (PIKKs). These results implicate defective PIKK biogenesis as a cause of some phenotypes associated with 22q11.2 syndrome. The phenotypic mapping of genes that suppress DNA damage therefore provides a rich resource to probe the cellular pathways that influence genome maintenance.


Asunto(s)
Sistemas CRISPR-Cas , Daño del ADN , Humanos , Mutación , Reparación del ADN , Fenotipo
11.
Genome Biol ; 24(1): 147, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37394429

RESUMEN

Sequencing has revealed hundreds of millions of human genetic variants, and continued efforts will only add to this variant avalanche. Insufficient information exists to interpret the effects of most variants, limiting opportunities for precision medicine and comprehension of genome function. A solution lies in experimental assessment of the functional effect of variants, which can reveal their biological and clinical impact. However, variant effect assays have generally been undertaken reactively for individual variants only after and, in most cases long after, their first observation. Now, multiplexed assays of variant effect can characterise massive numbers of variants simultaneously, yielding variant effect maps that reveal the function of every possible single nucleotide change in a gene or regulatory element. Generating maps for every protein encoding gene and regulatory element in the human genome would create an 'Atlas' of variant effect maps and transform our understanding of genetics and usher in a new era of nucleotide-resolution functional knowledge of the genome. An Atlas would reveal the fundamental biology of the human genome, inform human evolution, empower the development and use of therapeutics and maximize the utility of genomics for diagnosing and treating disease. The Atlas of Variant Effects Alliance is an international collaborative group comprising hundreds of researchers, technologists and clinicians dedicated to realising an Atlas of Variant Effects to help deliver on the promise of genomics.


Asunto(s)
Variación Genética , Genómica , Humanos , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Medicina de Precisión
12.
G3 (Bethesda) ; 13(7)2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37267226

RESUMEN

The COVID-19 pandemic has catalyzed unprecedented scientific data and reagent sharing and collaboration, which enabled understanding the virology of the SARS-CoV-2 virus and vaccine development at record speed. The pandemic, however, has also raised awareness of the danger posed by the family of coronaviruses, of which 7 are known to infect humans and dozens have been identified in reservoir species, such as bats, rodents, or livestock. To facilitate understanding the commonalities and specifics of coronavirus infections and aspects of viral biology that determine their level of lethality to the human host, we have generated a collection of freely available clones encoding nearly all human coronavirus proteins known to date. We hope that this flexible, Gateway-compatible vector collection will encourage further research into the interactions of coronaviruses with their human host, to increase preparedness for future zoonotic viral outbreaks.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2/genética , Pandemias
13.
bioRxiv ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37292969

RESUMEN

Amino acid substitutions can perturb protein activity in multiple ways. Understanding their mechanistic basis may pinpoint how residues contribute to protein function. Here, we characterize the mechanisms of human glucokinase (GCK) variants, building on our previous comprehensive study on GCK variant activity. We assayed the abundance of 95% of GCK missense and nonsense variants, and found that 43% of hypoactive variants have a decreased cellular abundance. By combining our abundance scores with predictions of protein thermodynamic stability, we identify residues important for GCK metabolic stability and conformational dynamics. These residues could be targeted to modulate GCK activity, and thereby affect glucose homeostasis.

14.
Genome Biol ; 24(1): 82, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081510

RESUMEN

The impact of millions of individual genetic variants on molecular phenotypes in coding sequences remains unknown. Multiplexed assays of variant effect (MAVEs) are scalable methods to annotate relevant variants, but existing software lacks standardization, requires cumbersome configuration, and does not scale to large targets. We present satmut_utils as a flexible solution for simulation and variant quantification. We then benchmark MAVE software using simulated and real MAVE data. We finally determine mRNA abundance for thousands of cystathionine beta-synthase variants using two experimental methods. The satmut_utils package enables high-performance analysis of MAVEs and reveals the capability of variants to alter mRNA abundance.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Simulación por Computador , Fenotipo , Exones , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
15.
Genome Biol ; 24(1): 97, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37101203

RESUMEN

BACKGROUND: Glucokinase (GCK) regulates insulin secretion to maintain appropriate blood glucose levels. Sequence variants can alter GCK activity to cause hyperinsulinemic hypoglycemia or hyperglycemia associated with GCK-maturity-onset diabetes of the young (GCK-MODY), collectively affecting up to 10 million people worldwide. Patients with GCK-MODY are frequently misdiagnosed and treated unnecessarily. Genetic testing can prevent this but is hampered by the challenge of interpreting novel missense variants. RESULT: Here, we exploit a multiplexed yeast complementation assay to measure both hyper- and hypoactive GCK variation, capturing 97% of all possible missense and nonsense variants. Activity scores correlate with in vitro catalytic efficiency, fasting glucose levels in carriers of GCK variants and with evolutionary conservation. Hypoactive variants are concentrated at buried positions, near the active site, and at a region of known importance for GCK conformational dynamics. Some hyperactive variants shift the conformational equilibrium towards the active state through a relative destabilization of the inactive conformation. CONCLUSION: Our comprehensive assessment of GCK variant activity promises to facilitate variant interpretation and diagnosis, expand our mechanistic understanding of hyperactive variants, and inform development of therapeutics targeting GCK.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucoquinasa , Humanos , Glucoquinasa/genética , Glucoquinasa/química , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/diagnóstico , Mutación Missense , Pruebas Genéticas , Mutación
16.
Nat Commun ; 14(1): 2162, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061542

RESUMEN

Generating reference maps of interactome networks illuminates genetic studies by providing a protein-centric approach to finding new components of existing pathways, complexes, and processes. We apply state-of-the-art methods to identify binary protein-protein interactions (PPIs) for Drosophila melanogaster. Four all-by-all yeast two-hybrid (Y2H) screens of > 10,000 Drosophila proteins result in the 'FlyBi' dataset of 8723 PPIs among 2939 proteins. Testing subsets of data from FlyBi and previous PPI studies using an orthogonal assay allows for normalization of data quality; subsequent integration of FlyBi and previous data results in an expanded binary Drosophila reference interaction network, DroRI, comprising 17,232 interactions among 6511 proteins. We use FlyBi data to generate an autophagy network, then validate in vivo using autophagy-related assays. The deformed wings (dwg) gene encodes a protein that is both a regulator and a target of autophagy. Altogether, these resources provide a foundation for building new hypotheses regarding protein networks and function.


Asunto(s)
Proteínas de Drosophila , Mapas de Interacción de Proteínas , Animales , Mapas de Interacción de Proteínas/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mapeo de Interacción de Proteínas/métodos , Técnicas del Sistema de Dos Híbridos
17.
bioRxiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36865234

RESUMEN

Long read sequencing technologies, an attractive solution for many applications, often suffer from higher error rates. Alignment of multiple reads can improve base-calling accuracy, but some applications, e.g. sequencing mutagenized libraries where multiple distinct clones differ by one or few variants, require the use of barcodes or unique molecular identifiers. Unfortunately, sequencing errors can interfere with correct barcode identification, and a given barcode sequence may be linked to multiple independent clones within a given library. Here we focus on the target application of sequencing mutagenized libraries in the context of multiplexed assays of variant effects (MAVEs). MAVEs are increasingly used to create comprehensive genotype-phenotype maps that can aid clinical variant interpretation. Many MAVE methods use long-read sequencing of barcoded mutant libraries for accurate association of barcode with genotype. Existing long-read sequencing pipelines do not account for inaccurate sequencing or non-unique barcodes. Here, we describe Pacybara, which handles these issues by clustering long reads based on the similarities of (error-prone) barcodes while also detecting barcodes that have been associated with multiple genotypes. Pacybara also detects recombinant (chimeric) clones and reduces false positive indel calls. In three example applications, we show that Pacybara identifies and correctly resolves these issues.

19.
bioRxiv ; 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36798224

RESUMEN

Defects in hydroxymethylbilane synthase (HMBS) can cause Acute Intermittent Porphyria (AIP), an acute neurological disease. Although sequencing-based diagnosis can be definitive, ~⅓ of clinical HMBS variants are missense variants, and most clinically-reported HMBS missense variants are designated as "variants of uncertain significance" (VUS). Using saturation mutagenesis, en masse selection, and sequencing, we applied a multiplexed validated assay to both the erythroid-specific and ubiquitous isoforms of HMBS, obtaining confident functional impact scores for >84% of all possible amino-acid substitutions. The resulting variant effect maps generally agreed with biochemical expectation. However, the maps showed variants at the dimerization interface to be unexpectedly well tolerated, and suggested residue roles in active site dynamics that were supported by molecular dynamics simulations. Most importantly, these HMBS variant effect maps can help discriminate pathogenic from benign variants, proactively providing evidence even for yet-to-be-observed clinical missense variants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...