Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Endocrinology ; 158(9): 2741-2753, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28911171

RESUMEN

Sirtuin-3 (Sirt3) is an essential metabolic regulatory enzyme that plays an important role in mitochondrial metabolism, but its role in bone marrow and skeletal homeostasis remains largely unknown. In this study, we hypothesize that increased expression of Sirt3 plays a role in skeletal aging. Using mice that overexpress Sirt3 [i.e., Sirt3 transgenic (Sirt3Tg)], we show that Sirt3 is a positive regulator of adipogenesis and osteoclastogenesis and a negative regulator of skeletal homeostasis. Sirt3Tg mice exhibited more adipocytes in the tibia compared with control mice. Bone marrow stromal cells (BMSCs) from Sirt3Tg mice displayed an enhanced ability to differentiate into adipocytes compared with control BMSCs. We found a 2.5-fold increase in the number of osteoclasts on the bone surface in Sirt3Tg mice compared with control mice (P < 0.03), and increased osteoclastogenesis in vitro. Importantly, Sirt3 activates the mechanistic target of rapamycin (mTOR) pathway to regulate osteoclastogenesis. Sirt3Tg male mice exhibited a significant reduction in cortical thickness at the tibiofibular junction (P < 0.05). In summary, Sirt3 activity in bone marrow cells is associated with increased adipogenesis, increased osteoclastogenesis through activation of mTOR signaling, and reduced bone mass. Interestingly, Sirt3 expression in bone marrow cells increases during aging, suggesting that Sirt3 promotes age-related adipogenesis and osteoclastogenesis associated with bone loss. These findings identify Sirt3 as an important regulator of adipogenesis and skeletal homeostasis in vivo and identify Sirt3 as a potential target for the treatment of osteoporosis.


Asunto(s)
Adipogénesis/genética , Envejecimiento/fisiología , Osteoclastos/fisiología , Osteogénesis/genética , Osteoporosis/genética , Sirtuina 3/fisiología , Animales , Enfermedades Óseas Metabólicas/genética , Enfermedades Óseas Metabólicas/metabolismo , Enfermedades Óseas Metabólicas/patología , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoblastos/fisiología , Osteoporosis/metabolismo , Osteoporosis/patología , Sirtuina 3/genética
2.
PLoS One ; 10(7): e0134290, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26230337

RESUMEN

Epidemiological studies show that high circulating levels of adiponectin are associated with low bone mineral density. The effect of adiponectin on skeletal homeostasis, on osteoblasts in particular, remains controversial. We investigated this issue using mice with adipocyte-specific over-expression of adiponectin (AdTg). MicroCT and histomorphometric analysis revealed decreases (15%) in fractional bone volume in AdTg mice at the proximal tibia with no changes at the distal femur. Cortical bone thickness at mid-shafts of the tibia and at the tibiofibular junction was reduced (3-4%) in AdTg mice. Dynamic histomorphometry at the proximal tibia in AdTg mice revealed inhibition of bone formation. AdTg mice had increased numbers of adipocytes in close proximity to trabecular bone in the tibia, associated with increased adiponectin levels in tibial marrow. Treatment of BMSCs with adiponectin after initiation of osteoblastic differentiation resulted in reduced mineralized colony formation and reduced expression of mRNA of osteoblastic genes, osterix (70%), Runx2 (52%), alkaline phosphatase (72%), Col1 (74%), and osteocalcin (81%). Adiponectin treatment of differentiating osteoblasts increased expression of the osteoblast genes PPARγ (32%) and C/ebpα (55%) and increased adipocyte colony formation. These data suggest a model in which locally produced adiponectin plays a negative role in regulating skeletal homeostasis through inhibition of bone formation and by promoting an adipogenic phenotype.


Asunto(s)
Adiponectina/fisiología , Huesos/fisiología , Adiponectina/biosíntesis , Tejido Adiposo/citología , Animales , Ratones , Ratones Transgénicos , Osteoblastos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...