Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Regul Toxicol Pharmacol ; 142: 105434, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37302561

RESUMEN

A challenging step in human risk assessment of chemicals is the derivation of safe thresholds. The Threshold of Toxicological Concern (TTC) concept is one option which can be used for the safety evaluation of substances with a limited toxicity dataset, but for which exposure is sufficiently low. The application of the TTC is generally accepted for orally or dermally exposed cosmetic ingredients; however, these values cannot directly be applied to the inhalation route because of differences in exposure route versus oral and dermal. Various approaches of an inhalation TTC concept have been developed over recent years to address this. A virtual workshop organized by Cosmetics Europe, held in November 2020, shared the current state of the science regarding the applicability of existing inhalation TTC approaches to cosmetic ingredients. Key discussion points included the need for an inhalation TTC for local respiratory tract effects in addition to a systemic inhalation TTC, dose metrics, database building and quality of studies, definition of the chemical space and applicability domain, and classification of chemicals with different potencies. The progress made to date in deriving inhalation TTCs was highlighted, as well as the next steps envisaged to develop them further for regulatory acceptance and use.


Asunto(s)
Cosméticos , Humanos , Nivel sin Efectos Adversos Observados , Cosméticos/toxicidad , Sistema Respiratorio , Europa (Continente) , Medición de Riesgo
3.
Toxicol In Vitro ; 69: 104990, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32882340

RESUMEN

A standard protocol was used to determine partition (K) and diffusion (D) coefficients in dermatomed human skin and isolated human skin layers for 50 compounds relevant to cosmetics ingredients. K values were measured in dermatomed skin, isolated dermis, whole epidermis, intact stratum corneum (SC), delipidized SC and SC lipids by direct measurements of the radioactivity in the tissue layers/lipid component vs. buffer samples. D determinations were made in dermatomed skin, isolated dermis, whole epidermis and intact SC using a non-linear regression of the cumulative receptor fluid content of radiolabeled compound, fit to the solution of Fick's 2nd Law. Correlation analysis was completed between K, D, and physicochemical properties. The amount of interindividual (donor) and intraindividual (replicate) variability in the K and D data was characterized for each skin layer and chemical. These data can be further used to help inform the factors that influence skin bioavailability and to help improve in silico models of dermal penetration.


Asunto(s)
Cosméticos/química , Cosméticos/metabolismo , Medición de Riesgo/métodos , Absorción Cutánea , Piel/metabolismo , Adulto , Anciano , Difusión , Femenino , Humanos , Técnicas In Vitro , Lípidos/química , Persona de Mediana Edad , Permeabilidad , Albúmina Sérica Bovina
4.
J Appl Toxicol ; 40(3): 416-433, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31912921

RESUMEN

The abundance of xenobiotic metabolizing enzymes (XMEs) is different in the skin and liver; therefore, it is important to differentiate between liver and skin metabolism when applying the information to safety assessment of topically applied ingredients in cosmetics. Here, we have employed EpiSkin™ S9 and human liver S9 to investigate the organ-specific metabolic stability of 47 cosmetic-relevant chemicals. The rank order of the metabolic rate of six chemicals in primary human hepatocytes and liver S9 matched relatively well. XME pathways in liver S9 were also present in EpiSkin S9; however, the rate of metabolism tended to be lower in the latter. It was possible to rank chemicals into low-, medium- and high-clearance chemicals and compare rates of metabolism across chemicals with similar structures. The determination of the half-life for 21 chemicals was affected by one or more factors such as spontaneous reaction with cofactors or non-specific binding, but these technical issues could be accounted for in most cases. There were seven chemicals that were metabolized by liver S9 but not by EpiSkin S9: 4-amino-3-nitrophenol, resorcinol, cinnamyl alcohol and 2-acetylaminofluorene (slowly metabolized); and cyclophosphamide, benzophenone, and 6-methylcoumarin. These data support the use of human liver and EpiSkin S9 as screening assays to indicate the liver and skin metabolic stability of a chemical and to allow for comparisons across structurally similar chemicals. Moreover, these data can be used to estimate the systemic bioavailability and clearance of chemicals applied topically, which will ultimately help with the safety assessment of cosmetics ingredients.


Asunto(s)
Cosméticos/metabolismo , Microsomas Hepáticos/enzimología , Piel/enzimología , Administración Cutánea , Biotransformación , Cosméticos/administración & dosificación , Cosméticos/toxicidad , Humanos , Medición de Riesgo
5.
J Appl Toxicol ; 40(3): 403-415, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31867769

RESUMEN

OECD test guideline 428 compliant protocol using human skin was used to test the penetration of 56 cosmetic-relevant chemicals. The penetration of finite doses (10 µL/cm2 ) of chemicals was measured over 24 hours. The dermal delivery (DD) (amount in the epidermis, dermis and receptor fluid [RF]) ranged between 0.03 ± 0.02 and 72.61 ± 8.89 µg/cm2 . The DD of seven chemicals was comparable with in vivo values. The DD was mainly accounted for by the amount in the RF, although there were some exceptions, particularly of low DD chemicals. While there was some variability due to cell outliers and donor variation, the overall reproducibility was very good. As six chemicals had to be applied in 100% ethanol due to low aqueous solubility, we compared the penetration of four chemicals with similar physicochemical properties applied in ethanol and phosphate-buffered saline. Of these, the DD of hydrocortisone was the same in both solvents, while the DD of propylparaben, geraniol and benzophenone was lower in ethanol. Some chemicals displayed an infinite dose kinetic profile; whereas, the cumulative absorption of others into the RF reflected the finite dosing profile, possibly due to chemical volatility, total absorption, chemical precipitation through vehicle evaporation or protein binding (or a combination of these). These investigations provide a substantial and consistent set of skin penetration data that can help improve the understanding of skin penetration, as well as improve the prediction capacity of in silico skin penetration models.


Asunto(s)
Cosméticos/metabolismo , Absorción Cutánea , Piel/metabolismo , Administración Cutánea , Adulto , Anciano , Cosméticos/administración & dosificación , Etanol/química , Femenino , Humanos , Cinética , Masculino , Persona de Mediana Edad , Solubilidad , Solventes/química , Adulto Joven
6.
J Appl Toxicol ; 40(2): 313-326, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31701564

RESUMEN

An understanding of the bioavailability of topically applied cosmetics ingredients is key to predicting their local skin and systemic toxicity and making a safety assessment. We investigated whether short-term incubations with S9 from the reconstructed epidermal skin model, EpiSkin™, would give an indication of the rate of chemical metabolism and produce similar metabolites to those formed in incubations with human skin explants. Both have advantages: EpiSkin™ S9 is a higher-throughput assay, while the human skin explant model represents a longer incubation duration (24 hours) model integrating cutaneous distribution with metabolite formation. Here, we compared the metabolism of 10 chemicals (caffeine, vanillin, cinnamyl alcohol, propylparaben, 4-amino-3-nitrophenol, resorcinol, 4-chloroaniline, 2-amino-3-methyl-3H-imidazo[4,5-F]quinoline and 2-acetyl aminofluorene) in both models. Both models were shown to have functional Phase 1 and 2 enzymes, including cytochrome P450 activities. There was a good concordance between the models with respect to the level of metabolism (stable vs. slowly vs. extensively metabolized chemicals) and major early metabolites produced for eight chemicals. Discordant results for two chemicals were attributed to a lack of the appropriate cofactor (NADP+ ) in S9 incubations (cinnamyl alcohol) and protein binding influencing chemical uptake in skin explants (4-chloroaniline). These data support the use of EpiSkin™ S9 as a screening assay to provide an initial indication of the metabolic stability of a chemical applied topically. If required, chemicals that are not metabolized by EpiSkin™ S9 can be tested in longer-term incubations with in vitro human explant skin to determine whether it is slowly metabolized or not metabolized at all.


Asunto(s)
Células Cultivadas/efectos de los fármacos , Cosméticos/metabolismo , Cosméticos/toxicidad , Pruebas de Irritación de la Piel/métodos , Piel/efectos de los fármacos , Acetofenonas/metabolismo , Acetofenonas/toxicidad , Compuestos de Anilina/metabolismo , Compuestos de Anilina/toxicidad , Animales , Benzaldehídos/metabolismo , Benzaldehídos/toxicidad , Bencilaminas/metabolismo , Bencilaminas/toxicidad , Cafeína/metabolismo , Humanos , Parabenos/metabolismo , Parabenos/toxicidad , Ácidos Pentanoicos/metabolismo , Ácidos Pentanoicos/toxicidad , Propanoles/metabolismo , Propanoles/toxicidad , Resorcinoles/metabolismo , Resorcinoles/toxicidad
7.
Skin Pharmacol Physiol ; 32(3): 117-124, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30889606

RESUMEN

BACKGROUND: We tested the cutaneous distribution of 50 chemicals in frozen human skin. The mass balance (MB) values for 48% of the chemicals were < 90%, possibly due to evaporation. METHODS: We confirmed the reduction in MB was due to evaporation for two chemicals tested in skin penetration experiments using a carbon filter above the skin to trap airborne chemical. An in vitro assay was used to predict the reduction in MB due to evaporation by comparing the recovery of chemicals after 4 h of incubation at room temperature in open and closed vials. RESULTS: Evaporative losses in vitro correlated well with measured MBs (i.e., < 90%) in skin penetration experiments (R2 = 0.81). There was a correlation of the MB with the vapour pressure (VP) which could be used to group chemicals according to their likelihood to evaporate during the course of a skin penetration study. There was also a correlation of MB with Henry's law constants, melting and boiling points. CONCLUSION: Our data support the use of a quick and simple test for volatility to account for the loss of MB in skin penetration experiment due to volatility. The best parameter to indicate the potential of a chemical to evaporate is the VP.


Asunto(s)
Bioensayo/métodos , Preparaciones Farmacéuticas/química , Adulto , Anciano , Carbono/química , Femenino , Congelación , Humanos , Masculino , Persona de Mediana Edad , Preparaciones Farmacéuticas/análisis , Piel/metabolismo , Absorción Cutánea , Temperatura de Transición , Presión de Vapor , Volatilización , Adulto Joven
8.
Toxicol In Vitro ; 50: 137-146, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29499337

RESUMEN

When performing safety assessment of chemicals, the evaluation of their systemic toxicity based only on non-animal approaches is a challenging objective. The Safety Evaluation Ultimately Replacing Animal Test programme (SEURAT-1) addressed this question from 2011 to 2015 and showed that further research and development of adequate tools in toxicokinetic and toxicodynamic are required for performing non-animal safety assessments. It also showed how to implement tools like thresholds of toxicological concern (TTCs) and read-across in this context. This paper shows a tiered scientific workflow and how each tier addresses the four steps of the risk assessment paradigm. Cosmetics Europe established its Long Range Science Strategy (LRSS) programme, running from 2016 to 2020, based on the outcomes of SEURAT-1 to implement this workflow. Dedicated specific projects address each step of this workflow, which is introduced here. It tackles the question of evaluating the internal dose when systemic exposure happens. The applicability of the workflow will be shown through a series of case studies, which will be published separately. Even if the LRSS puts the emphasis on safety assessment of cosmetic relevant chemicals, it remains applicable to any type of chemical.


Asunto(s)
Alternativas a las Pruebas en Animales/métodos , Pruebas de Toxicidad/métodos , Animales , Cosméticos , Europa (Continente) , Humanos , Investigación , Medición de Riesgo/métodos
9.
Regul Toxicol Pharmacol ; 91: 197-207, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29080845

RESUMEN

Use of quantitative risk assessment (QRA) for assessing the skin sensitization potential of chemicals present in consumer products requires an understanding of hazard and product exposure. In the absence of data, consumer exposure is based on relevant habits and practices and assumes 100% skin uptake of the applied dose. To confirm and refine the exposure, a novel design for in vitro skin exposure measurements was conducted with the preservative, methylisothiazolinone (MI), in beauty care (BC) and household care (HHC) products using realistic consumer exposure conditions. A difference between measured exposure levels (MELs) for MI in leave-on versus rinse-off BC products, and lower MELs for MI in HHC rinse-off compared to BC products was demonstrated. For repeated product applications, the measured exposure was lower than estimations based on summation of applied amounts. Compared to rinse-off products, leave-on applications resulted in higher MELs, correlating with the higher incidences of allergic contact dermatitis associated with those product types. Lower MELs for MI in rinse-off products indicate a lower likelihood to induce skin sensitization, also after multiple daily applications. These in vitro skin exposure measurements indicate conservatism of default exposure estimates applied in skin sensitization QRA and might be helpful in future risk assessments.


Asunto(s)
Tiazoles/administración & dosificación , Tiazoles/efectos adversos , Seguridad de Productos para el Consumidor , Cosméticos/administración & dosificación , Cosméticos/efectos adversos , Dermatitis Alérgica por Contacto/etiología , Relación Dosis-Respuesta a Droga , Productos Domésticos/efectos adversos , Humanos , Conservadores Farmacéuticos/administración & dosificación , Conservadores Farmacéuticos/efectos adversos , Medición de Riesgo/métodos , Piel , Pruebas Cutáneas/métodos
10.
Skin Pharmacol Physiol ; 30(5): 234-245, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28746940

RESUMEN

BACKGROUND: The Cosmetics Europe ADME Task Force is developing in vitro and in silico tools for predicting skin and systemic concentrations after topical application of cosmetic ingredients. There are conflicting reports as to whether the freezing process affects the penetration of chemicals; therefore, we evaluated whether the storage of human skin used in our studies (8-12 weeks at -20°C) affected the penetration of model chemicals. METHODS: Finite doses of trans-cinnamic acid (TCA), benzoic acid (BA), and 6-methylcoumarin (6MC) (non-volatile, non-protein reactive and metabolically stable in skin) were applied to fresh and thawed frozen skin from the same donors. The amounts of chemicals in different skin compartments were analysed after 24 h. RESULTS: Although there were some statistical differences in some parameters for 1 or 2 donors, the penetration of TCA, BA, and 6MC was essentially the same in fresh and frozen skin, i.e., there were no biologically relevant differences in penetration values. Statistical differences that were evident indicated that penetration was marginally lower in frozen than in fresh skin, indicating that the barrier function of the skin was not lost. CONCLUSION: The penetration of the 3 chemicals was essentially unaffected by freezing the skin at -20°C for up to 12 weeks.


Asunto(s)
Cosméticos/farmacocinética , Criopreservación , Preservación de Órganos , Absorción Cutánea , Piel , Adulto , Ácido Benzoico/farmacocinética , Cinamatos/farmacocinética , Cumarinas/farmacocinética , Femenino , Congelación , Humanos , Técnicas In Vitro , Persona de Mediana Edad
11.
Regul Toxicol Pharmacol ; 76: 174-86, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26825378

RESUMEN

Threshold of Toxicological Concern (TTC) aids assessment of human health risks from exposure to low levels of chemicals when toxicity data are limited. The objective here was to explore the potential refinement of exposure for applying the oral TTC to chemicals found in cosmetic products, for which there are limited dermal absorption data. A decision tree was constructed to estimate the dermally absorbed amount of chemical, based on typical skin exposure scenarios. Dermal absorption was calculated using an established predictive algorithm to derive the maximum skin flux adjusted to the actual 'dose' applied. The predicted systemic availability (assuming no local metabolism), can then be ranked against the oral TTC for the relevant structural class. The predictive approach has been evaluated by deriving the experimental/prediction ratio for systemic availability for 22 cosmetic chemical exposure scenarios. These emphasise that estimation of skin penetration may be challenging for penetration enhancing formulations, short application times with incomplete rinse-off, or significant metabolism. While there were a few exceptions, the experiment-to-prediction ratios mostly fell within a factor of 10 of the ideal value of 1. It can be concluded therefore, that the approach is fit-for-purpose when used as a screening and prioritisation tool.


Asunto(s)
Cosméticos/toxicidad , Árboles de Decisión , Absorción Intestinal , Modelos Biológicos , Absorción Cutánea , Piel/metabolismo , Pruebas de Toxicidad/métodos , Administración Cutánea , Administración Oral , Algoritmos , Animales , Disponibilidad Biológica , Seguridad de Productos para el Consumidor , Cosméticos/administración & dosificación , Cosméticos/farmacocinética , Relación Dosis-Respuesta a Droga , Humanos , Nivel sin Efectos Adversos Observados , Medición de Riesgo
12.
Toxicol In Vitro ; 32: 1-7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26578466

RESUMEN

Oral absorption is a key element for safety assessments of cosmetic ingredients, including hair dye molecules. Reliable in vitro methods are needed since the European Union has banned the use of animals for the testing of cosmetic ingredients. Caco-2 cells were used to measure the intestinal permeability characteristics (Papp) of 14 aromatic amine hair dye molecules with varying chemical structures, and the data were compared with historical in vivo oral absorption rat data. The majority of the hair dyes exhibited Papp values that indicated good in vivo absorption. The moderate to high oral absorption findings, i.e. ≥60%, were confirmed in in vivo rat studies. Moreover, the compound with a very low Papp value (APB: 3-((9,10-dihydro-9,10-dioxo-4-(methylamino)-1-anthracenyl)amino)-N,N-dimethyl-N-propyl-1-propanaminium) was poorly absorbed in vivo as well (5% of the dose). This data set suggests that the Caco-2 cell model is a reliable in vitro tool for the determination of the intestinal absorption of aromatic amines with diverse chemical structures. When used in combination with other in vitro assays for metabolism and skin penetration, the Caco-2 model can contribute to the prediction and mechanistic interpretation of the absorption, metabolism and elimination properties of cosmetic ingredients without the use of animals.


Asunto(s)
Aminas/farmacocinética , Alternativas a las Pruebas en Animales , Tinturas para el Cabello/farmacocinética , Absorción Intestinal , Administración Oral , Animales , Bioensayo , Células CACO-2 , Humanos , Ratas Wistar , Reproducibilidad de los Resultados
13.
Toxicol Appl Pharmacol ; 287(2): 139-148, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26028483

RESUMEN

Approaches to assess the role of absorption, metabolism and excretion of cosmetic ingredients that are based on the integration of different in vitro data are important for their safety assessment, specifically as it offers an opportunity to refine that safety assessment. In order to estimate systemic exposure (AUC) to aromatic amine hair dyes following typical product application conditions, skin penetration and epidermal and systemic metabolic conversion of the parent compound was assessed in human skin explants and human keratinocyte (HaCaT) and hepatocyte cultures. To estimate the amount of the aromatic amine that can reach the general circulation unchanged after passage through the skin the following toxicokinetically relevant parameters were applied: a) Michaelis-Menten kinetics to quantify the epidermal metabolism; b) the estimated keratinocyte cell abundance in the viable epidermis; c) the skin penetration rate; d) the calculated Mean Residence Time in the viable epidermis; e) the viable epidermis thickness and f) the skin permeability coefficient. In a next step, in vitro hepatocyte Km and Vmax values and whole liver mass and cell abundance were used to calculate the scaled intrinsic clearance, which was combined with liver blood flow and fraction of compound unbound in the blood to give hepatic clearance. The systemic exposure in the general circulation (AUC) was extrapolated using internal dose and hepatic clearance, and Cmax was extrapolated (conservative overestimation) using internal dose and volume of distribution, indicating that appropriate toxicokinetic information can be generated based solely on in vitro data. For the hair dye, p-phenylenediamine, these data were found to be in the same order of magnitude as those published for human volunteers.


Asunto(s)
Aminofenoles/farmacocinética , Tinturas para el Cabello/farmacocinética , Hepatocitos/metabolismo , Queratinocitos/metabolismo , Absorción Cutánea/fisiología , Animales , Cromatografía Líquida de Alta Presión , Epidermis/metabolismo , Humanos , Espectrometría de Masas , Tasa de Depuración Metabólica , Ratas
14.
Skin Pharmacol Physiol ; 28(1): 12-21, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25034576

RESUMEN

BACKGROUND/AIMS: Establishing dermal penetration rates is important to better understand the safety of topically applied materials, especially for premature infant skin with compromised skin barrier function. Skin prematurity involves thinner stratum corneum and underdeveloped epidermis/dermis resulting in decreased barrier function, higher transepidermal water loss and greater chemical penetration, when compared to healthy full-term neonate/adult skin. METHODS: We developed an in vitro skin penetration model using human ex vivo skin to estimate penetration for premature/compromised skin barrier conditions by tape stripping. Skin barrier deficiency was characterized by transepidermal water loss. Baby wipe lotion containing 5 mg/cm(2) [(14)C]-PEG-7 phosphate was applied 5 times to human skin samples of intact, moderately or highly compromised skin barrier and once at 25 mg/cm(2) over 24 h. RESULTS: Overall penetration of [(14)C]-PEG-7 phosphate was low (<5%) even for highly compromised skin. The absorption rate was higher (p < 0.001) for compromised skin versus intact skin. No significant difference was seen between moderately and highly compromised skin by repeated dosing. Under single-dose conditions, penetration through highly compromised skin was significantly higher compared to intact skin (p = 0.001). CONCLUSION: Our model demonstrates that even under highly compromised skin conditions, penetration of [(14)C]-PEG-7 phosphate is low (<5%) and only 4-6 times higher compared to mature/intact skin and does not approach 100%. Penetration was unaffected by single or multiple dosing conditions.


Asunto(s)
Fosfatos/farmacología , Polietilenglicoles/farmacología , Absorción Cutánea , Piel/lesiones , Piel/metabolismo , Seguridad de Productos para el Consumidor , Humanos , Técnicas In Vitro
15.
Toxicol Appl Pharmacol ; 274(3): 480-7, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24333256

RESUMEN

The strong sensitizing potencies of the most important primary intermediates of oxidative hair dyes, p-phenylenediamine (PPD) and p-toluylenediamine (PTD, i.e. 2-methyl-PPD) are well established. They are considered as the key sensitizers in hair dye allergic contact dermatitis. While modification of their molecular structure is expected to alter their sensitizing properties, it may also impair their color performance. With introduction of a methoxymethyl side chain we found the primary intermediate 2-methoxymethyl-p-phenylenediamine (ME-PPD) with excellent hair coloring performance but significantly reduced sensitizing properties compared to PPD and PTD: In vitro, ME-PPD showed an attenuated innate immune response when analyzed for its protein reactivity and dendritic cell activation potential. In vivo, the effective concentration of ME-PPD necessary to induce an immune response 3-fold above vehicle control (EC3 value) in the local lymph node assay (LLNA) was 4.3%, indicating a moderate skin sensitizing potency compared to values of 0.1 and 0.17% for PPD and PTD, respectively. Finally, assessing the skin sensitizing potency of ME-PPD under consumer hair dye usage conditions through a quantitative risk assessment (QRA) indicated an allergy induction risk negligible compared to PPD or PTD.


Asunto(s)
Dermatitis Alérgica por Contacto/prevención & control , Tinturas para el Cabello/toxicidad , Fenilendiaminas/farmacología , Fenilendiaminas/toxicidad , Animales , Antígeno B7-2/genética , Antígeno B7-2/metabolismo , Línea Celular Tumoral , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Dermatitis Alérgica por Contacto/inmunología , Relación Dosis-Respuesta a Droga , Femenino , Tinturas para el Cabello/química , Humanos , Ensayo del Nódulo Linfático Local , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos CBA , Fenilendiaminas/química , Medición de Riesgo , Piel/efectos de los fármacos , Piel/inmunología
16.
J Immunotoxicol ; 8(1): 46-55, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21299354

RESUMEN

1,4-Phenylenediamine (PPD) and the structurally-related 1,4-toluenediamine (PTD) are frequently used oxidative hair dye precursors that can induce a delayed-type hypersensitivity reaction known as contact allergy. Very rare cases of Type 1 (IgE-mediated) allergic responses associated with PPD or PTD have been reported among hair dye users. As part of an effort to determine if repeated dermal exposure to the dyes could induce a T-helper-2 (T(H)2) response, we used a dermal exposure regimen in mice reported to identify a T(H)2 response. Ear swelling was evident at post-final exposure to PPD and PTD, indicating that an immune response was observed. However, cytokine mRNA after repeated topical exposure to these two chemicals showed no shift in the expression toward the typical T(H)2 cytokines interleukin (IL)-4 and IL-10 compared to the T(H)1 cytokine interferon (IFN)-γ. Consistent with these cytokine profiles, no concomitant increase in total serum IgE antibody titer or in B220+IgE+ lymphocytes in lymph nodes and skin application site skin was detected. In contrast, using an identical exposure regimen, animals topically exposed to the known respiratory (Type 1) allergen toluene 2,4-diisocyanate (TDI) showed significant expression of IL-4 and IL-10 mRNA compared to IFN? as well as an increase in total serum IgE and in B220+IgE+ cells in lymph nodes and skin application site. The data generated are consistent with the pattern of adverse reactions to hair dyes seen clinically, which overwhelmingly is of delayed rather than immediate-type hypersensitivity. Although current animal models have a limited ability to detect rare T(H)2 responses to contact allergens, the present study results support the view that exposure to hair dyes is not associated with relevant T(H)2 induction.


Asunto(s)
Dermatitis Alérgica por Contacto/inmunología , Tinturas para el Cabello/toxicidad , Fenilendiaminas/toxicidad , Células Th2/efectos de los fármacos , Células Th2/inmunología , Administración Cutánea , Animales , Citocinas/inmunología , Dermatitis Alérgica por Contacto/etiología , Relación Dosis-Respuesta a Droga , Interferón gamma/inmunología , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...