Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
2.
Nucleic Acids Res ; 52(5): 2372-2388, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38214234

RESUMEN

Pediatric high-grade gliomas (pHGG) are devastating and incurable brain tumors with recurrent mutations in histone H3.3. These mutations promote oncogenesis by dysregulating gene expression through alterations of histone modifications. We identify aberrant DNA repair as an independent mechanism, which fosters genome instability in H3.3 mutant pHGG, and opens new therapeutic options. The two most frequent H3.3 mutations in pHGG, K27M and G34R, drive aberrant repair of replication-associated damage by non-homologous end joining (NHEJ). Aberrant NHEJ is mediated by the DNA repair enzyme polynucleotide kinase 3'-phosphatase (PNKP), which shows increased association with mutant H3.3 at damaged replication forks. PNKP sustains the proliferation of cells bearing H3.3 mutations, thus conferring a molecular vulnerability, specific to mutant cells, with potential for therapeutic targeting.


Asunto(s)
Neoplasias Encefálicas , Glioma , Histonas , Niño , Humanos , Neoplasias Encefálicas/patología , Reparación del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Glioma/patología , Histonas/genética , Histonas/metabolismo , Mutación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
4.
Cells ; 10(6)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201169

RESUMEN

RNA-containing structures, including ribonucleotide insertions, DNA:RNA hybrids and R-loops, have recently emerged as critical players in the maintenance of genome integrity. Strikingly, different enzymatic activities classically involved in genome maintenance contribute to their generation, their processing into genotoxic or repair intermediates, or their removal. Here we review how this substrate promiscuity can account for the detrimental and beneficial impacts of RNA insertions during genome metabolism. We summarize how in vivo and in vitro experiments support the contribution of DNA polymerases and homologous recombination proteins in the formation of RNA-containing structures, and we discuss the role of DNA repair enzymes in their removal. The diversity of pathways that are thus affected by RNA insertions likely reflects the ancestral function of RNA molecules in genome maintenance and transmission.


Asunto(s)
Replicación del ADN , ADN/metabolismo , ARN/metabolismo , Transcripción Genética , Animales , Reparación del ADN , Recombinación Homóloga , Humanos , Estructuras R-Loop
6.
Methods Mol Biol ; 2153: 253-265, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32840785

RESUMEN

The precise organization of the genome inside the cell nucleus is vital to many cell functions including gene expression, cell division, and DNA repair. Here we describe a method to measure pairing of DNA loci during homologous recombination (HR) at a site-specific double-strand break (DSB) in Saccharomyces cerevisiae. This method utilizes a chromosome tagging system in diploid yeast cells to visualize both the DNA at the break site and the homologous DNA that serves as a repair template. DNA repair products are confirmed in parallel by genomic blot. This visualization method provides insight into the physical contact that occurs between homologous loci during HR and correlates physical interaction with the timing of DNA repair.


Asunto(s)
Cromosomas Fúngicos/genética , Reparación del ADN por Recombinación , Saccharomyces cerevisiae/genética , Núcleo Celular/genética , Emparejamiento Cromosómico , Roturas del ADN de Doble Cadena , Microscopía Fluorescente
7.
Mol Biol Cell ; 30(21): 2620-2625, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31483739

RESUMEN

During S phase in Saccharomyces cerevisiae, chromosomal loci become mobile in response to DNA double-strand breaks both at the break site (local mobility) and throughout the nucleus (global mobility). Increased nuclear exploration is regulated by the recombination machinery and the DNA damage checkpoint and is likely an important aspect of homology search. While mobility in response to DNA damage has been studied extensively in S phase, the response in interphase has not, and the question of whether homologous recombination proceeds to completion in G1 phase remains controversial. Here, we find that global mobility is triggered in G1 phase. As in S phase, global mobility in G1 phase is controlled by the DNA damage checkpoint and the Rad51 recombinase. Interestingly, despite the restriction of Rad52 mediator foci to S phase, Rad51 foci form at high levels in G1 phase. Together, these observations indicate that the recombination and checkpoint machineries promote global mobility in G1 phase, supporting the notion that recombination can occur in interphase diploids.


Asunto(s)
Núcleo Celular/genética , Cromosomas Fúngicos/genética , Daño del ADN , Fase G1/genética , Saccharomyces cerevisiae/genética , Núcleo Celular/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Recombinación Homóloga , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Fase S/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Genes Dev ; 33(17-18): 1191-1207, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371435

RESUMEN

The vast majority of eukaryotes possess two DNA recombinases: Rad51, which is ubiquitously expressed, and Dmc1, which is meiosis-specific. The evolutionary origins of this two-recombinase system remain poorly understood. Interestingly, Dmc1 can stabilize mismatch-containing base triplets, whereas Rad51 cannot. Here, we demonstrate that this difference can be attributed to three amino acids conserved only within the Dmc1 lineage of the Rad51/RecA family. Chimeric Rad51 mutants harboring Dmc1-specific amino acids gain the ability to stabilize heteroduplex DNA joints with mismatch-containing base triplets, whereas Dmc1 mutants with Rad51-specific amino acids lose this ability. Remarkably, RAD-51 from Caenorhabditis elegans, an organism without Dmc1, has acquired "Dmc1-like" amino acids. Chimeric C. elegans RAD-51 harboring "canonical" Rad51 amino acids gives rise to toxic recombination intermediates, which must be actively dismantled to permit normal meiotic progression. We propose that Dmc1 lineage-specific amino acids involved in the stabilization of heteroduplex DNA joints with mismatch-containing base triplets may contribute to normal meiotic recombination.


Asunto(s)
Aminoácidos/metabolismo , Recombinasa Rad51/química , Recombinasa Rad51/metabolismo , Recombinasas/química , Recombinasas/metabolismo , Recombinación Genética/genética , Aminoácidos/genética , Animales , Disparidad de Par Base , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Secuencia Conservada , Mutación , Recombinasa Rad51/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Recombinasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Nucleic Acids Res ; 47(17): 9144-9159, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31350889

RESUMEN

The postreplication repair gene, HLTF, is often amplified and overexpressed in cancer. Here we model HLTF dysregulation through the functionally conserved Saccharomyces cerevisiae ortholog, RAD5. Genetic interaction profiling and landscape enrichment analysis of RAD5 overexpression (RAD5OE) reveals requirements for genes involved in recombination, crossover resolution, and DNA replication. While RAD5OE and rad5Δ both cause cisplatin sensitivity and share many genetic interactions, RAD5OE specifically requires crossover resolving genes and drives recombination in a region of repetitive DNA. Remarkably, RAD5OE induced recombination does not require other post-replication repair pathway members, or the PCNA modification sites involved in regulation of this pathway. Instead, the RAD5OE phenotype depends on a conserved domain necessary for binding 3' DNA ends. Analysis of DNA replication intermediates supports a model in which dysregulated Rad5 causes aberrant template switching at replication forks. The direct effect of Rad5 on replication forks in vivo, increased recombination, and cisplatin sensitivity predicts similar consequences for dysregulated HLTF in cancer.


Asunto(s)
ADN Helicasas/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Inestabilidad Genómica/genética , Recombinación Genética/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Cisplatino/farmacología , Intercambio Genético/genética , Daño del ADN/efectos de los fármacos , Reparación del ADN/genética , Replicación del ADN/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias/genética , Saccharomyces cerevisiae/genética
10.
Microb Cell ; 6(1): 1-64, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30652105

RESUMEN

Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.

11.
Genome Med ; 10(1): 90, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30482246

RESUMEN

BACKGROUND: Mutations in KRAS are frequent in human cancer, yet effective targeted therapeutics for these cancers are still lacking. Attempts to drug the MEK kinases downstream of KRAS have had limited success in clinical trials. Understanding the specific genomic vulnerabilities of KRAS-driven cancers may uncover novel patient-tailored treatment options. METHODS: We first searched for synthetic lethal (SL) genetic interactions with mutant RAS in yeast with the ultimate aim to identify novel cancer-specific targets for therapy. Our method used selective ploidy ablation, which enables replication of cancer-specific gene expression changes in the yeast gene disruption library. Second, we used a genome-wide CRISPR/Cas9-based genetic screen in KRAS mutant human colon cancer cells to understand the mechanistic connection between the synthetic lethal interaction discovered in yeast and downstream RAS signaling in human cells. RESULTS: We identify loss of the endoplasmic reticulum (ER) stress sensor IRE1 as synthetic lethal with activated RAS mutants in yeast. In KRAS mutant colorectal cancer cell lines, genetic ablation of the human ortholog of IRE1, ERN1, does not affect growth but sensitizes to MEK inhibition. However, an ERN1 kinase inhibitor failed to show synergy with MEK inhibition, suggesting that a non-kinase function of ERN1 confers MEK inhibitor resistance. To investigate how ERN1 modulates MEK inhibitor responses, we performed genetic screens in ERN1 knockout KRAS mutant colon cancer cells to identify genes whose inactivation confers resistance to MEK inhibition. This genetic screen identified multiple negative regulators of JUN N-terminal kinase (JNK) /JUN signaling. Consistently, compounds targeting JNK/MAPK8 or TAK1/MAP3K7, which relay signals from ERN1 to JUN, display synergy with MEK inhibition. CONCLUSIONS: We identify the ERN1-JNK-JUN pathway as a novel regulator of MEK inhibitor response in KRAS mutant colon cancer. The notion that multiple signaling pathways can activate JUN may explain why KRAS mutant tumor cells are traditionally seen as highly refractory to MEK inhibitor therapy. Our findings emphasize the need for the development of new therapeutics targeting JUN activating kinases, TAK1 and JNK, to sensitize KRAS mutant cancer cells to MEK inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias del Colon/genética , Endorribonucleasas/genética , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Bencimidazoles/farmacología , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Estrés del Retículo Endoplásmico , Células HEK293 , Humanos , Quinasas Quinasa Quinasa PAM/genética , Proteínas Proto-Oncogénicas c-jun/genética , Piridonas/farmacología , Pirimidinonas/farmacología , Respuesta de Proteína Desplegada , Levaduras/genética
12.
Cell Rep ; 25(7): 1681-1692.e4, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30428339

RESUMEN

The yeast Mre11-Rad50-Xrs2 (MRX) complex has structural, signaling, and catalytic functions in the response to DNA damage. Xrs2, the eukaryotic-specific component of the complex, is required for nuclear import of Mre11 and Rad50 and to recruit the Tel1 kinase to damage sites. We show that nuclear-localized MR complex (Mre11-NLS) catalyzes homology-dependent repair without Xrs2, but MR cannot activate Tel1, and it fails to tether DSBs, resulting in sensitivity to genotoxins, replisome instability, and increased gross chromosome rearrangements (GCRs). Fusing the Tel1 interaction domain from Xrs2 to Mre11-NLS is sufficient to restore telomere elongation and Tel1 signaling to Xrs2-deficient cells. Furthermore, Tel1 stabilizes Mre11-DNA association, and this stabilization function becomes important for DNA damage resistance in the absence of Xrs2. Enforcing Tel1 recruitment to the nuclear MR complex fully rescues end tethering and stalled replication fork stability, and suppresses GCRs, highlighting important roles for Xrs2 and Tel1 to ensure optimal MR activity.


Asunto(s)
ADN de Hongos/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN , Replicación del ADN , Reordenamiento Génico/genética , Complejos Multiproteicos/metabolismo , Mutación/genética , Unión Proteica , Estabilidad Proteica , Recombinación Genética/genética , Saccharomyces cerevisiae/metabolismo
13.
Genes Dev ; 32(17-18): 1242-1251, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30181361

RESUMEN

During homologous recombination, cells must coordinate repair, DNA damage checkpoint signaling, and movement of chromosomal loci to facilitate homology search. In Saccharomyces cerevisiae, increased movement of damaged loci (local mobility) and undamaged loci (global mobility) precedes homolog pairing in mitotic cells. How cells modulate chromosome mobility in response to DNA damage remains unclear. Here, we demonstrate that global chromosome mobility is regulated by the Rad51 recombinase and its mediator, Rad52. Surprisingly, rad51Δ rad52Δ cells display checkpoint-dependent constitutively increased mobility, indicating that a regulatory circuit exists between recombination and checkpoint machineries to govern chromosomal mobility. We found that the requirement for Rad51 in this circuit is distinct from its role in recombination and that interaction with Rad52 is necessary to alleviate inhibition imposed by mediator recruitment to ssDNA. Thus, interplay between recombination factors and the checkpoint restricts increased mobility until recombination proteins are assembled at damaged sites.


Asunto(s)
Cromosomas Fúngicos/metabolismo , Daño del ADN , Recombinación Homóloga , Recombinasa Rad51/fisiología , Proteína Recombinante y Reparadora de ADN Rad52/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Mutación , Recombinasa Rad51/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
Mol Cell ; 67(6): 1068-1079.e4, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28890334

RESUMEN

Standard CRISPR-mediated gene disruption strategies rely on Cas9-induced DNA double-strand breaks (DSBs). Here, we show that CRISPR-dependent base editing efficiently inactivates genes by precisely converting four codons (CAA, CAG, CGA, and TGG) into STOP codons without DSB formation. To facilitate gene inactivation by induction of STOP codons (iSTOP), we provide access to a database of over 3.4 million single guide RNAs (sgRNAs) for iSTOP (sgSTOPs) targeting 97%-99% of genes in eight eukaryotic species, and we describe a restriction fragment length polymorphism (RFLP) assay that allows the rapid detection of iSTOP-mediated editing in cell populations and clones. To simplify the selection of sgSTOPs, our resource includes annotations for off-target propensity, percentage of isoforms targeted, prediction of nonsense-mediated decay, and restriction enzymes for RFLP analysis. Additionally, our database includes sgSTOPs that could be employed to precisely model over 32,000 cancer-associated nonsense mutations. Altogether, this work provides a comprehensive resource for DSB-free gene disruption by iSTOP.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Codón de Terminación , Edición Génica/métodos , Silenciador del Gen , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Codón sin Sentido , Biología Computacional , Enzimas de Restricción del ADN/genética , Enzimas de Restricción del ADN/metabolismo , Bases de Datos Genéticas , Regulación Fúngica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Células HEK293 , Humanos , Ratones , Neoplasias/genética , Neoplasias/metabolismo , Polimorfismo de Longitud del Fragmento de Restricción , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Ratas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transfección
15.
Mol Biol Cell ; 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28794266

RESUMEN

The dynamic organization of genes inside the nucleus is an important determinant for their function. Using fast DNA tracking microscopy in S. cerevisiae cells and improved analysis of mean square displacements, we quantified DNA motion at time scales ranging from 10 milliseconds to minute and found that following DNA damage, DNA exhibits distinct sub-diffusive regimes. In response to double-strand breaks, chromatin is more mobile at large time scales but, surprisingly, its mobility is reduced at short time scales. This effect is even more pronounced at the site of damage. Such a pattern of dynamics is consistent with a global increase in chromatin persistence length in response to DNA damage. Scale-dependent nuclear exploration is regulated by the Rad51 repair protein, both at the break and throughout the genome. We propose a model in which stiffening of the damaged ends by the repair complex, combined with global increased stiffness, act like a "needle in a ball of yarn", enhancing the ability of the break to traverse the chromatin meshwork.

16.
DNA Repair (Amst) ; 56: 102-108, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28663070

RESUMEN

Double-strand breaks (DSBs) are among the most lethal DNA lesions, and a variety of pathways have evolved to manage their repair in a timely fashion. One such pathway is homologous recombination (HR), in which information from an undamaged donor site is used as a template for repair. Although many of the biochemical steps of HR are known, the physical movements of chromosomes that must underlie the pairing of homologous sequence during mitotic DSB repair have remained mysterious. Recently, several groups have begun to use a variety of genetic and cell biological tools to study this important question. These studies reveal that both damaged and undamaged loci increase the volume of the nuclear space that they explore after the formation of DSBs. This DSB-induced increase in chromosomal mobility is regulated by many of the same factors that are important during HR, such as ATR-dependent checkpoint activation and the recombinase Rad51, suggesting that this phenomenon may facilitate the search for homology. In this perspective, we review current research into the mobility of chromosomal loci during HR, as well as possible underlying mechanisms, and discuss the critical questions that remain to be answered. Although we focus primarily on recent studies in the budding yeast, Saccharomyces cerevisiae, examples of experiments performed in higher eukaryotes are also included, which reveal that increased mobility of damaged loci is a process conserved throughout evolution.


Asunto(s)
Cromosomas/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Recombinación , Saccharomyces cerevisiae/genética , ADN/metabolismo , Eucariontes/genética , Eucariontes/metabolismo , Saccharomyces cerevisiae/metabolismo
17.
Genetics ; 204(2): 807-819, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27558135

RESUMEN

The CKS1B gene located on chromosome 1q21 is frequently amplified in breast, lung, and liver cancers. CKS1B codes for a conserved regulatory subunit of cyclin-CDK complexes that function at multiple stages of cell cycle progression. We used a high throughput screening protocol to mimic cancer-related overexpression in a library of Saccharomyces cerevisiae mutants to identify genes whose functions become essential only when CKS1 is overexpressed, a synthetic dosage lethal (SDL) interaction. Mutations in multiple genes affecting mitotic entry and mitotic exit are highly enriched in the set of SDL interactions. The interactions between Cks1 and the mitotic entry checkpoint genes require the inhibitory activity of Swe1 on the yeast cyclin-dependent kinase (CDK), Cdc28. In addition, the SDL interactions of overexpressed CKS1 with mutations in the mitotic exit network are suppressed by modulating expression of the CDK inhibitor Sic1. Mutation of the polo-like kinase Cdc5, which functions in both the mitotic entry and mitotic exit pathways, is lethal in combination with overexpressed CKS1 Therefore we investigated the effect of targeting the human Cdc5 ortholog, PLK1, in breast cancers with various expression levels of human CKS1B Growth inhibition by PLK1 knockdown correlates with increased CKS1B expression in published tumor cell data sets, and this correlation was confirmed using shRNAs against PLK1 in tumor cell lines. In addition, we overexpressed CKS1B in multiple cell lines and found increased sensitivity to PLK1 knockdown and PLK1 drug inhibition. Finally, combined inhibition of WEE1 and PLK1 results in less apoptosis than predicted based on an additive model of the individual inhibitors, showing an epistatic interaction and confirming a prediction of the yeast data. Thus, identification of a yeast SDL interaction uncovers conserved genetic interactions that can affect human cancer cell viability.


Asunto(s)
Quinasas CDC2-CDC28/genética , Proteínas de Ciclo Celular/genética , Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/genética , Quinasas CDC2-CDC28/biosíntesis , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/biosíntesis , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/biosíntesis , Línea Celular Tumoral , Secuencia Conservada/genética , Regulación Fúngica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Mitosis/genética , Neoplasias/metabolismo , Proteínas Nucleares/biosíntesis , Mapeo de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Tirosina Quinasas/biosíntesis , Proteínas Proto-Oncogénicas/biosíntesis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Mutaciones Letales Sintéticas/genética , Quinasa Tipo Polo 1
18.
PLoS One ; 11(3): e0151314, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26974669

RESUMEN

In cells lacking telomerase, telomeres shorten progressively during each cell division due to incomplete end-replication. When the telomeres become very short, cells enter a state that blocks cell division, termed senescence. A subset of these cells can overcome senescence and maintain their telomeres using telomerase-independent mechanisms. In Saccharomyces cerevisiae, these cells are called 'survivors' and are dependent on Rad52-dependent homologous recombination and Pol32-dependent break-induced replication. There are two main types of survivors: type I and type II. The type I survivors require Rad51 and maintain telomeres by amplification of subtelomeric elements, while the type II survivors are Rad51-independent, but require the MRX complex and Sgs1 to amplify the C1-3A/TG1-3 telomeric sequences. Rad52, Pol32, Rad51, and Sgs1 are also important to prevent accelerated senescence, indicating that recombination processes are important at telomeres even before the formation of survivors. The Shu complex, which consists of Shu1, Shu2, Psy3, and Csm2, promotes Rad51-dependent homologous recombination and has been suggested to be important for break-induced replication. It also promotes the formation of recombination intermediates that are processed by the Sgs1-Top3-Rmi1 complex, as mutations in the SHU genes can suppress various sgs1, top3, and rmi1 mutant phenotypes. Given the importance of recombination processes during senescence and survivor formation, and the involvement of the Shu complex in many of the same processes during DNA repair, we hypothesized that the Shu complex may also have functions at telomeres. Surprisingly, we find that this is not the case: the Shu complex does not affect the rate of senescence, does not influence survivor formation, and deletion of SHU1 does not suppress the rapid senescence and type II survivor formation defect of a telomerase-negative sgs1 mutant. Altogether, our data suggest that the Shu complex is not important for recombination processes at telomeres.


Asunto(s)
Complejos Multiproteicos/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Homeostasis del Telómero/genética , Eliminación de Gen , Viabilidad Microbiana/genética , Proteínas de Saccharomyces cerevisiae/genética , Telomerasa/metabolismo
19.
Cold Spring Harb Perspect Biol ; 7(3): a016535, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25731763

RESUMEN

Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules as well as the cellular organization of the process of homologous recombination. Herein we review the cell biological aspects of mitotic homologous recombination with a focus on Saccharomyces cerevisiae and mammalian cells, but will also draw on findings from other experimental systems. Key topics of this review include the stoichiometry and dynamics of recombination complexes in vivo, the choreography of assembly and disassembly of recombination proteins at sites of DNA damage, the mobilization of damaged DNA during homology search, and the functional compartmentalization of the nucleus with respect to capacity of homologous recombination.


Asunto(s)
Fenómenos Bioquímicos/fisiología , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Mitosis/fisiología , Modelos Biológicos , Recombinación Genética/fisiología , Animales , Biología Celular , Humanos , Saccharomyces cerevisiae
20.
Genetics ; 198(3): 795-835, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25381364

RESUMEN

Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell.


Asunto(s)
Mitosis/genética , Recombinación Genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Daño del ADN , ADN de Hongos/genética , Técnicas Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA