Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 677: 88-92, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37562340

RESUMEN

Calcium (Ca) isotopes (δ44/42Ca) in serum and urine have been suggested as novel sensitive markers of bone calcification. The response of δ44/42Ca to acute changes in Ca homeostasis, has not yet been demonstrated. We measured serum Ca and δ44/42Ca in rats maintained on a standard and a 50% Ca reduced diet for 4 weeks, and after injection of 1 mg/kg of the calcimimetic AMG-416, 24 h prior to sacrifice. AMG-416 decreased serum Ca by a maximum of 0.38 ± 0.10 and 0.53 ± 0.35 mmol/l after 12 and 6 h, respectively, in the standard and low-Ca diet groups (p = 0.0006/0.02), while serum δ44/42Ca did not change over 24 h in both groups. Urinary Ca concentrations were higher 24 h after AMG-416 injection in both groups (p = 0.03/0.06), urine δ44/42Ca was not different compared to the untreated control groups. Our data does not show acute changes in δ44/42Ca in response to a single dose of AMG-416 within 24 h after injection, possibly due to a lack of bone calcification.

2.
Int J Mol Sci ; 23(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35887143

RESUMEN

Serum calcium isotopes (δ44/42Ca) have been suggested as a non-invasive and sensitive Ca balance marker. Quantitative δ44/42Ca changes associated with Ca flux across body compartment barriers relative to the dietary Ca and the correlation of δ44/42CaSerum with bone histology are unknown. We analyzed Ca and δ44/42Ca by mass-spectrometry in rats after two weeks of standard-Ca-diet (0.5%) and after four subsequent weeks of standard- and of low-Ca-diet (0.25%). In animals on a low-Ca-diet net Ca gain was 61 ± 3% and femur Ca content 68 ± 41% of standard-Ca-diet, bone mineralized area per section area was 68 ± 15% compared to standard-Ca-diet. δ44/42Ca was similar in the diets, and decreased in feces and urine and increased in serum in animals on low-Ca-diet. δ44/42CaBone was higher in animals on low-Ca-diet, lower in the diaphysis than the metaphysis and epiphysis, and unaffected by gender. Independent of diet, δ44/42CaBone was similar in the femora and ribs. At the time of sacrifice, δ44/42CaSerum inversely correlated with intestinal Ca uptake and histological bone mineralization markers, but not with Ca content and bone mineral density by µCT. In conclusion, δ44/42CaBone was bone site specific, but mechanical stress and gender independent. Low-Ca-diet induced marked changes in feces, serum and urine δ44/42Ca in growing rats. δ44/42CaSerum inversely correlated with markers of bone mineralization.


Asunto(s)
Calcificación Fisiológica , Calcio , Animales , Densidad Ósea , Calcio/análisis , Isótopos de Calcio , Calcio de la Dieta , Dieta , Ratas
3.
Am J Physiol Regul Integr Comp Physiol ; 321(1): R29-R40, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33978493

RESUMEN

Timely and accurate diagnosis of osteoporosis is essential for adequate therapy. Calcium isotope ratio (δ44/42Ca) determination has been suggested as a sensitive, noninvasive, and radiation-free biomarker for the diagnosis of osteoporosis, reflecting bone calcium balance. The quantitative diagnostic is based on the calculation of the δ44/42Ca difference between blood, urine, and bone. The underlying cellular processes, however, have not been studied systematically. We quantified calcium transport and δ44/42Ca fractionation during in vitro bone formation and resorption by osteoblasts and osteoclasts and across renal proximal tubular epithelial cells (HK-2), human vein umbilical endothelial cells (HUVECs), and enterocytes (Caco-2) in transwell systems and determined transepithelial electrical resistance characteristics. δ44/42Ca fractionation was furthermore quantified with calcium binding to albumin and collagen. Calcified matrix formed by osteoblasts was isotopically lighter than culture medium by -0.27 ± 0.03‰ within 5 days, while a consistent effect of activated osteoclasts on δ44/42Ca could not be demonstrated. A transient increase in δ44/42Ca in the apical compartment by 0.26‰ occured across HK-2 cells, while δ44/42Ca fractionation was small across the HUVEC barrier and absent with Caco-2 enterocytes, and with binding of calcium to albumin and collagen. In conclusion, δ44/42Ca fractionation follows similar universal principles as during inorganic mineral precipitation; osteoblast activity results in δ44/42Ca fractionation. δ44/42Ca fractionation also occurs across the proximal tubular cell barrier and needs to be considered for in vivo bone mineralization modeling. In contrast, the effect of calcium transport across endothelial and enterocyte barriers on blood δ44/42Ca should be low and is absent with physiochemical binding of calcium to proteins.


Asunto(s)
Isótopos de Calcio/química , Calcio/química , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Transporte Biológico , Células CACO-2 , Calcio/metabolismo , Línea Celular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Túbulos Renales Proximales/citología , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA