RESUMEN
BACKGROUND: Recent findings demonstrate that single nucleotide variants can cause non-obstructive azoospermia (NOA). In contrast, copy number variants (CNVs) were only analysed in few studies in infertile men. Some have reported a higher prevalence of CNVs in infertile versus fertile men. OBJECTIVES: This study aimed to elucidate if CNVs are associated with NOA. MATERIALS AND METHODS: We performed array-based comparative genomic hybridisation (aCGH) in 37 men with meiotic arrest, 194 men with Sertoli cell-only phenotype, and 21 control men. We filtered our data for deletions affecting genes and prioritised the affected genes according to the literature search. Prevalence of CNVs was compared between all groups. Exome data of 2,030 men were screened to detect further genetic variants in prioritised genes. Modelling was performed for the protein encoded by the novel candidate gene TEKT5 and we stained for TEKT5 in human testicular tissue. RESULTS: We determined the cause of infertility in two individuals with homozygous deletions of SYCE1 and in one individual with a heterozygous deletion of SYCE1 combined with a likely pathogenic missense variant on the second allele. We detected heterozygous deletions affecting MLH3, EIF2B2, SLX4, CLPP and TEKT5, in one subject each. CNVs were not detected more frequently in infertile men compared with controls. DISCUSSION: While SYCE1 and MLH3 encode known meiosis-specific proteins, much less is known about the proteins encoded by the other identified candidate genes, warranting further analyses. We were able to identify the cause of infertility in one out of the 231 infertile men by aCGH and in two men by using exome sequencing data. CONCLUSION: As aCGH and exome sequencing are both expensive methods, combining both in a clinical routine is not an effective strategy. Instead, using CNV calling from exome data has recently become more precise, potentially making aCGH dispensable.
Asunto(s)
Azoospermia , Azoospermia/diagnóstico , Variaciones en el Número de Copia de ADN , Homocigoto , Humanos , Masculino , NucleótidosRESUMEN
STUDY QUESTION: Do bi-allelic variants in the genes encoding the MSH4/MSH5 heterodimer cause male infertility? SUMMARY ANSWER: We detected biallelic, (likely) pathogenic variants in MSH5 (4 men) and MSH4 (3 men) in six azoospermic men, demonstrating that genetic variants in these genes are a relevant cause of male infertility. WHAT IS KNOWN ALREADY: MSH4 and MSH5 form a heterodimer, which is required for prophase of meiosis I. One variant in MSH5 and two variants in MSH4 have been described as causal for premature ovarian insufficiency (POI) in a total of five women, resulting in infertility. Recently, pathogenic variants in MSH4 have been reported in infertile men. So far, no pathogenic variants in MSH5 had been described in males. STUDY DESIGN, SIZE, DURATION: We utilized exome data from 1305 men included in the Male Reproductive Genomics (MERGE) study, including 90 males with meiotic arrest (MeiA). Independently, exome sequencing was performed in a man with MeiA from a large consanguineous family. PARTICIPANTS/MATERIALS, SETTING, METHODS: Assuming an autosomal-recessive mode of inheritance, we screened the exome data for rare, biallelic coding variants in MSH4 and MSH5. If possible, segregation analysis in the patients' families was performed. The functional consequences of identified loss-of-function (LoF) variants in MSH5 were studied using heterologous expression of the MSH5 protein in HEK293T cells. The point of arrest during meiosis was determined by γH2AX staining. MAIN RESULTS AND THE ROLE OF CHANCE: We report for the first time (likely) pathogenic, homozygous variants in MSH5 causing infertility in 2 out of 90 men with MeiA and overall in 4 out of 902 azoospermic men. Additionally, we detected biallelic variants in MSH4 in two men with MeiA and in the sister of one proband with POI. γH2AX staining revealed an arrest in early prophase of meiosis I in individuals with pathogenic MSH4 or MSH5 variants. Heterologous in vitro expression of the detected LoF variants in MSH5 showed that the variant p.(Ala620GlnTer9) resulted in MSH5 protein truncation and the variant p.(Ser26GlnfsTer42) resulted in a complete loss of MSH5. LARGE SCALE DATA: All variants have been submitted to ClinVar (SCV001468891-SCV001468896 and SCV001591030) and can also be accessed in the Male Fertility Gene Atlas (MFGA). LIMITATIONS, REASONS FOR CAUTION: By selecting for variants in MSH4 and MSH5, we were able to determine the cause of infertility in six men and one woman, leaving most of the examined individuals without a causal diagnosis. WIDER IMPLICATIONS OF THE FINDINGS: Our findings have diagnostic value by increasing the number of genes associated with non-obstructive azoospermia with high clinical validity. The analysis of such genes has prognostic consequences for assessing whether men with azoospermia would benefit from a testicular biopsy. We also provide further evidence that MeiA in men and POI in women share the same genetic causes. STUDY FUNDING/COMPETING INTEREST(S): This study was carried out within the frame of the German Research Foundation sponsored Clinical Research Unit 'Male Germ Cells: from Genes to Function' (DFG, CRU326), and supported by institutional funding of the Research Institute Amsterdam Reproduction and Development and funds from the LucaBella Foundation. The authors declare no conflict of interest.
Asunto(s)
Azoospermia , Infertilidad Masculina , Azoospermia/genética , Proteínas de Ciclo Celular/genética , Reparación de la Incompatibilidad de ADN , Femenino , Células HEK293 , Humanos , Infertilidad Masculina/genética , Masculino , Meiosis/genética , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/genéticaRESUMEN
Specification of germ cell-like cells from induced pluripotent stem cells has become a clinically relevant tool for research. Research on initial embryonic processes is often limited by the access to foetal tissue, and in humans, the molecular events resulting in primordial germ cell (PGC) specification and sex determination remain to be elucidated. A deeper understanding of the underlying processes is crucial to describe pathomechanisms leading to impaired reproductive function. Several protocols have been established for the specification of human pluripotent stem cell towards early PGC-like cells (PGCLC), currently representing the best model to mimic early human germline developmental processes in vitro. Further sex determination towards the male lineage depends on somatic gonadal cells providing the necessary molecular cues. By establishing a culture system characterized by the re-organization of somatic cells from postnatal rat testes into cord-like structures and optimizing efficient PGCLC specification protocols, we facilitated the co-culture of human germ cell-like cells within a surrogate testicular microenvironment. Specified conditions allowed the survival of rat somatic testicular and human PGCLCs for 14 days. Human cells maintained the characteristic expression of octamer-binding transcription factor 4, SRY-box transcription factor 17, and transcription factor AP-2 gamma and were recovered from the xeno-organoids by cell sorting. This novel xeno-organoid approach will allow the in vitro exploration of early sex determination of human PGCLCs.