Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 471: 134454, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38688223

RESUMEN

Parallel to the important use of pesticides in conventional agriculture there is a growing interest for green technologies to clear contaminated soil from pesticides and their degradation products. Bioaugmentation i. e. the inoculation of degrading micro-organisms in polluted soil, is a promising method still in needs of further developments. Specifically, improvements in the understanding of how degrading microorganisms must overcome abiotic filters and interact with the autochthonous microbial communities are needed in order to efficiently design bioremediation strategies. Here we designed a protocol aiming at studying the degradation of two herbicides, glyphosate (GLY) and isoproturon (IPU), via experimental modifications of two source bacterial communities. We used statistical methods stemming from genomic prediction to link community composition to herbicides degradation potentials. Our approach proved to be efficient with correlation estimates over 0.8 - between model predictions and measured pesticide degradation values. Multi-degrading bacterial communities were obtained by coalescing bacterial communities with high GLY or IPU degradation ability based on their community-level properties. Finally, we evaluated the efficiency of constructed multi-degrading communities to remove pesticide contamination in a different soil. While results are less clear in the case of GLY, we showed an efficient transfer of degrading capacities towards the receiving soil even at relatively low inoculation levels in the case of IPU. Altogether, we developed an innovative protocol for building multi-degrading simplified bacterial communities with the help of genomic prediction tools and coalescence, and proved their efficiency in a contaminated soil.


Asunto(s)
Bacterias , Biodegradación Ambiental , Glicina , Glifosato , Herbicidas , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Glicina/análogos & derivados , Glicina/metabolismo , Bacterias/metabolismo , Bacterias/genética , Herbicidas/metabolismo , Herbicidas/química , Compuestos de Fenilurea/metabolismo , Residuos de Plaguicidas/metabolismo
2.
FEMS Microbiol Ecol ; 99(7)2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37309049

RESUMEN

Microbacterium sp. C448, isolated from a soil regularly exposed to sulfamethazine (SMZ), can use various sulphonamide antibiotics as the sole carbon source for growth. The basis for the regulation of genes encoding the sulphonamide metabolism pathway, the dihydropteroate synthase sulphonamide target (folP), and the sulphonamide resistance (sul1) genes is unknown in this organism. In the present study, the response of the transcriptome and proteome of Microbacterium sp. C448 following exposure to subtherapeutic (33 µM) or therapeutic (832 µM) SMZ concentrations was evaluated. Therapeutic concentration induced the highest sad expression and Sad production, consistent with the activity of SMZ degradation observed in cellulo. Following complete SMZ degradation, Sad production tended to return to the basal level observed prior to SMZ exposure. Transcriptomic and proteomic kinetics were concomitant for the resistance genes and proteins. The abundance of Sul1 protein, 100-fold more abundant than FolP protein, did not change in response to SMZ exposure. Moreover, non-targeted analyses highlighted the increase of a deaminase RidA and a putative sulphate exporter expression and production. These two novel factors involved in the 4-aminophenol metabolite degradation and the export of sulphate residues formed during SMZ degradation, respectively, provided new insights into the Microbacterium sp. C448 SMZ detoxification process.


Asunto(s)
Antiinfecciosos , Biodegradación Ambiental , Microbacterium , Sulfametazina , Microbacterium/genética , Microbacterium/metabolismo , Sulfametazina/metabolismo , Microbiología del Suelo , Cinética , Transcriptoma , Proteoma , Sulfonamidas/metabolismo , Farmacorresistencia Bacteriana , Antiinfecciosos/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Dihidropteroato Sintasa/genética , Dihidropteroato Sintasa/metabolismo
3.
Ecotoxicol Environ Saf ; 223: 112595, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34390984

RESUMEN

The implementation of the new Water Reuse regulation in the European Union brings to the forefront the need to evaluate the risks of using wastewater for crop irrigation. Here, a two-tier ecotoxicological risk assessment was performed to evaluate the fate of wastewater-borne micropollutants in soil and their ecotoxicological impact on plants and soil microorganisms. To this end, two successive cultivation campaigns of lettuces were irrigated with wastewater (at agronomical dose (not spiked) and spiked with a mixture of 14 pharmaceuticals at 10 and 100 µg/L each) in a controlled greenhouse experiment. Over the two cultivation campaigns, an accumulation of PPCPs was observed in soil microcosms irrigated with wastewater spiked with 100 µg/L of PPCPs with the highest concentrations detected for clarithromycin, hydrochlorothiazide, citalopram, climbazole and carbamazepine. The abundance of bacterial and fungal communities remained stable over the two cultivation campaigns and was not affected by any of the irrigation regimes applied. Similarly, no changes were observed in the abundance of ammonium oxidizing archaea (AOA) and bacteria (AOB), nor in clade A of commamox no matter the cultivation campaign or the irrigation regime considered. Only a slight increase was detected in clade B of commamox bacteria after the second cultivation campaign. Sulfamethoxazole-resistant and -degrading bacteria were not impacted either. The irrigation regimes had only a limited effect on the bacterial evenness. However, in response to wastewater irrigation the structure of soil bacterial community significantly changed the relative abundance of Acidobacteria, Chloroflexi, Verrucomicrobia, Beta-, Gamma- and Deltaprotebacteria. Twenty-eight operational taxonomic units (OTUs) were identified as responsible for the changes observed within the bacterial communities of soils irrigated with wastewater or with water. Interestingly, the relative abundance of these OTUs was similar in soils irrigated with either spiked or non-spiked irrigation solutions. This indicates that under both agronomical and worst-case scenario the mixture of fourteen PPCPs had no effect on soil bacterial community.


Asunto(s)
Suelo , Aguas Residuales , Riego Agrícola , Lactuca , Medición de Riesgo , Microbiología del Suelo , Aguas Residuales/análisis
4.
J Hazard Mater ; 416: 125740, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33848793

RESUMEN

One of the major problems with pesticides is linked to the non-negligible proportion of the sprayed active ingredient that does not reach its intended target and contaminates environmental compartments. Here, we have implemented and provided new insights to the preventive bioremediation process based on the simultaneous application of the pesticide with pesticide-degrading microorganisms to reduce the risk of leaching into the environment. This study pioneers such a practice, in an actual farming context. The 2,4-dichlorophenoxyacetic acid herbicide (2,4-D) and one of its bacterial mineralizing-strains (Cupriavidus necator JMP134) were used as models. The 2,4-D biodegradation was studied in soil microcosms planted with sensitive (mustard) and insensitive (wheat) plants. Simultaneous application of a 2,4-D commercial formulation (DAM®) at agricultural recommended doses with 105 cells.g-1 dw of soil of the JMP134 strain considerably accelerated mineralization of the herbicide since its persistence was reduced threefold for soil supplemented with the mineralizing bacterium without reducing the herbicide efficiency. Furthermore, the inoculation of the Cupriavidus necator strain did not significantly affect the α- and ß-diversity of the bacterial community. By tackling the contamination immediately at source, the preventive bioremediation process proves to be an effective and promising way to reduce environmental contamination by agricultural pesticides.


Asunto(s)
Herbicidas , Plaguicidas , Contaminantes del Suelo , Ácido 2,4-Diclorofenoxiacético , Agricultura , Biodegradación Ambiental , Microbiología del Suelo
5.
Front Microbiol ; 12: 643087, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841365

RESUMEN

Chronic and repeated exposure of environmental bacterial communities to anthropogenic antibiotics have recently driven some antibiotic-resistant bacteria to acquire catabolic functions, enabling them to use antibiotics as nutritive sources (antibiotrophy). Antibiotrophy might confer a selective advantage facilitating the implantation and dispersion of antibiotrophs in contaminated environments. A microcosm experiment was conducted to test this hypothesis in an agroecosystem context. The sulfonamide-degrading and resistant bacterium Microbacterium sp. C448 was inoculated in four different soil types with and without added sulfamethazine and/or swine manure. After 1 month of incubation, Microbacterium sp. (and its antibiotrophic gene sadA) was detected only in the sulfamethazine-treated soils, suggesting a low competitiveness of the strain without antibiotic selection pressure. In the absence of manure and despite the presence of Microbacterium sp. C448, only one of the four sulfamethazine-treated soils exhibited mineralization capacities, which were low (inferior to 5.5 ± 0.3%). By contrast, manure addition significantly enhanced sulfamethazine mineralization in all the soil types (at least double, comprised between 5.6 ± 0.7% and 19.5 ± 1.2%). These results, which confirm that the presence of functional genes does not necessarily ensure functionality, suggest that sulfamethazine does not necessarily confer a selective advantage on the degrading strain as a nutritional source. 16S rDNA sequencing analyses strongly suggest that sulfamethazine released trophic niches by biocidal action. Accordingly, manure-originating bacteria and/or Microbacterium sp. C448 could gain access to low-competition or competition-free ecological niches. However, simultaneous inputs of manure and of the strain could induce competition detrimental for Microbacterium sp. C448, forcing it to use sulfamethazine as a nutritional source. Altogether, these results suggest that the antibiotrophic strain studied can modulate its sulfamethazine-degrading function depending on microbial competition and resource accessibility, to become established in an agricultural soil. Most importantly, this work highlights an increased dispersal potential of antibiotrophs in antibiotic-polluted environments, as antibiotics can not only release existing trophic niches but also form new ones.

6.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33414292

RESUMEN

We report here the complete genome sequences of four atrazine-degrading bacteria. Their genomes will serve as references for determining the genetic changes that have occurred during an evolution experiment.

7.
Appl Environ Microbiol ; 86(14)2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32414799

RESUMEN

Biobeds, designed to minimize pesticide point source contamination, rely mainly on biodegradation processes. We studied the interactions of a biobed microbial community with the herbicide isoproturon (IPU) to explore the role of the pdmA gene, encoding the large subunit of an N-demethylase responsible for the initial demethylation of IPU, via quantitative PCR (qPCR) and reverse transcription-PCR (RT-qPCR) and the effect of IPU on the diversity of the total bacterial community and its active fraction through amplicon sequencing of DNA and RNA, respectively. We further investigated the localization and dispersal mechanisms of pdmAB in the biobed packing material by measuring the abundance of the plasmid pSH (harboring pdmAB) of the IPU-degrading Sphingomonas sp. strain SH (previously isolated from the soil used in the biobed) compared with the abundance of the pdmA gene and metagenomic fosmid library screening. pdmA abundance and expression increased concomitantly with IPU mineralization, verifying its major role in IPU transformation in the biobed system. DNA- and RNA-based 16S rRNA gene sequencing analysis showed no effects on bacterial diversity. The pdmAB-harboring plasmid pSH showed a consistently lower abundance than pdmA, suggesting the localization of pdmAB in replicons other than pSH. Metagenomic analysis identified four pdmAB-carrying fosmids. In three of these fosmids, the pdmAB genes were organized in a well-conserved operon carried by sphingomonad plasmids with low synteny with pSH, while the fourth fosmid contained an incomplete pdmAB cassette localized in a genomic fragment of a Rhodanobacter strain. Further analysis suggested a potentially crucial role of IS6 and IS256 in the transposition and activation of the pdmAB operon.IMPORTANCE Our study provides novel insights into the interactions of IPU with the bacterial community of biobed systems, reinforces the assumption of a transposable nature of IPU-degrading genes, and verifies that on-farm biobed systems are hot spots for the evolution of pesticide catabolic traits.


Asunto(s)
Transferencia de Gen Horizontal , Genes Bacterianos , Herbicidas/metabolismo , Compuestos de Fenilurea/metabolismo , Sphingomonas/genética , Biodegradación Ambiental , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Sphingomonas/metabolismo
8.
Sci Rep ; 9(1): 18363, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31798012

RESUMEN

Microbial communities are pivotal in the biodegradation of xenobiotics including pesticides. In the case of atrazine, multiple studies have shown that its degradation involved a consortia rather than a single species, but little is known about how interdependency between the species composing the consortium is set up. The Black Queen Hypothesis (BQH) formalized theoretically the conditions leading to the evolution of dependency between species: members of the community called 'helpers' provide publicly common goods obtained from the costly degradation of a compound, while others called 'beneficiaries' take advantage of the public goods, but lose access to the primary resource through adaptive degrading gene loss. Here, we test whether liquid media supplemented with the herbicide atrazine could support coexistence of bacterial species through BQH mechanisms. We observed the establishment of dependencies between species through atrazine degrading gene loss. Labour sharing between members of the consortium led to coexistence of multiple species on a single resource and improved atrazine degradation potential. Until now, pesticide degradation has not been approached from an evolutionary perspective under the BQH framework. We provide here an evolutionary explanation that might invite researchers to consider microbial consortia, rather than single isolated species, as an optimal strategy for isolation of xenobiotics degraders.


Asunto(s)
Biodegradación Ambiental , Evolución Biológica , Microbiota/genética , Xenobióticos/química , Atrazina/química , Atrazina/toxicidad , Bacterias/genética , Bacterias/metabolismo , Herbicidas/química , Herbicidas/toxicidad , Plaguicidas/química , Plaguicidas/toxicidad , Microbiología del Suelo , Contaminantes del Suelo/química , Contaminantes del Suelo/toxicidad , Xenobióticos/toxicidad
9.
Sci Total Environ ; 637-638: 892-906, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29763870

RESUMEN

Tebuconazole (TBZ) is a widely used triazole fungicide at EU level on cereals and vines. It is relatively persistent in soil where it is transformed to various transformation products (TPs) which might be environmentally relevant. We assessed the dissipation of TBZ in soil under contrasting incubation conditions (standard vs winter simulated) that are relevant to its application scheme, determined its transformation pathway using advanced analytical tools and 14C-labeled TBZ and assessed its soil microbial toxicity. Mineralization of 14C-triazole-ring-labeled TBZ was negligible but up to 11% of 14C-penyl-ring-labeled TBZ evolved as 14CO2 within 150 days of incubation. TBZ persistence increased at higher dose rates (×10 compared to the recommended agronomical dose ×1) and under winter simulated conditions compared to standard incubation conditions (at ×1 dose rate DT50 of 202 and 88 days, respectively). Non-target suspect screening enabled the detection of 22 TPs of TBZ, among which 17 were unknown. Mass spectrometry analysis led to the identification of 1-(4-chlorophenyl) ethanone, a novel TP of TBZ, the formation of which and decay in soil was determined by gas chromatography mass spectrometry. Three hypothetical transformation pathways of TBZ, all converging to 1H-1,2,4-triazole are proposed based on suspect screening. The ecotoxicological effect of TBZ and of its TPs was assessed by measuring by qPCR the abundance of the total bacteria and the relative abundance of 11 prokaryotic taxa and 4 functional groups. A transient impact of TBZ on the relative abundance of all prokaryotic taxa (except α-proteobacteria and Bacteroidetes) and one functional microbial group (pcaH-carrying microorganisms) was observed. However the direction of the effect (positive or negative) varied, and in certain cases, depended on the incubation conditions. Proteobacteria was the most responsive phylum to TBZ with recovery observed 20 days after treatment. The ecotoxicological effects on the soil microorganisms were not correlated with 1-(4-chlorophenyl) ethanone.


Asunto(s)
Fungicidas Industriales/análisis , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Triazoles/toxicidad , Estaciones del Año , Suelo , Contaminantes del Suelo/análisis , Triazoles/análisis
10.
ISME J ; 12(4): 1061-1071, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29476139

RESUMEN

Changes in frequency and amplitude of rain events, that is, precipitation patterns, result in different water conditions with soil depth, and likely affect plant growth and shape plant and soil microbial activity. Here, we used 18O stable isotope probing (SIP) to investigate bacterial and fungal communities that actively grew or not upon rewetting, at three different depths in soil mesocosms previously subjected to frequent or infrequent watering for 12 weeks (equal total water input). Phylogenetic marker genes for bacteria and fungi were sequenced after rewetting, and plant-soil microbial coupling documented by plant 13C-CO2 labeling. Soil depth, rather than precipitation pattern, was most influential in shaping microbial response to rewetting, and had differential effects on active and inactive bacterial and fungal communities. After rewetting, active bacterial communities were less rich, more even and phylogenetically related than the inactive, and reactivated throughout the soil profile. Active fungal communities after rewetting were less abundant and rich than the inactive. The coupling between plants and soil microbes decreased under infrequent watering in the top soil layer. We suggest that differences in fungal and bacterial abundance and relative activity could result in large effects on subsequent soil biogeochemical cycling.


Asunto(s)
Bacterias/clasificación , Hongos/clasificación , Microbiología del Suelo , Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Filogenia , Desarrollo de la Planta , Lluvia , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...