Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Virol ; 92(23)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30209171

RESUMEN

Rhinoviruses (RVs) replicate on cytoplasmic membranes derived from the Golgi apparatus. They encode membrane-targeted proteins 2B, 2C, and 3A, which control trafficking and lipid composition of the replication membrane. The virus recruits host factors for replication, such as phosphatidylinositol 4 (PI4)-kinase 3beta (PI4K3b), which boosts PI4-phosphate (PI4P) levels and drives lipid countercurrent exchange of PI4P against cholesterol at endoplasmic reticulum-Golgi membrane contact sites through the lipid shuttling protein oxysterol binding protein 1 (OSBP1). We identified a PI4K3b inhibitor-resistant RV-A16 variant with a single point mutation in the conserved 2B protein near the cytosolic carboxy terminus, isoleucine 92 to threonine (termed 2B[I92T]). The mutation did not confer resistance to cholesterol-sequestering compounds or OSBP1 inhibition, suggesting invariant dependency on the PI4P/cholesterol lipid countercurrents. In the presence of PI4K3b inhibitor, Golgi reorganization and PI4P lipid induction occurred in RV-A16 2B[I92] but not in wild-type infection. The knockout of PI4K3b abolished the replication of both the 2B[I92T] mutant and the wild type. Doxycycline-inducible expression of PI4K3b in PI4K3b knockout cells efficiently rescued the 2B[I92T] mutant and, less effectively, wild-type virus infection. Ectopic expression of 2B[I92T] or 2B was less efficient than that of 3A in recruiting PI4K3b to perinuclear membranes, suggesting a supportive rather than decisive role of 2B in recruiting PI4K3b. The data suggest that 2B tunes the recruitment of PI4K3b to the replication membrane and allows the virus to adapt to cells with low levels of PI4K3b while still maintaining the PI4P/cholesterol countercurrent for establishing Golgi-derived RV replication membranes.IMPORTANCE Human rhinoviruses (RVs) are the major cause of the common cold worldwide. They cause asthmatic exacerbations and chronic obstructive pulmonary disease. Despite recent advances, the development of antivirals and vaccines has proven difficult due to the high number and variability of RV types. The identification of critical host factors and their interactions with viral proteins and membrane lipids for the establishment of viral replication is a basis for drug development strategies. Our findings here shed new light on the interactions between nonstructural viral membrane proteins and class III phosphatidylinositol 4 kinases from the host and highlight the importance of phosphatidylinositol 4 phosphate for RV replication.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Infecciones por Picornaviridae/virología , Mutación Puntual , Rhinovirus/genética , Proteínas no Estructurales Virales/genética , Replicación Viral , Membrana Celular/metabolismo , Membrana Celular/virología , Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Aparato de Golgi/metabolismo , Aparato de Golgi/virología , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Infecciones por Picornaviridae/genética , Infecciones por Picornaviridae/metabolismo , Transporte de Proteínas
2.
Cell Death Dis ; 9(3): 272, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29449668

RESUMEN

Apoptosis and programmed necrosis (necroptosis) determine cell fate, and antagonize infection. Execution of these complementary death pathways involves the formation of receptor-interacting protein kinase 1 (RIPK1) containing complexes. RIPK1 binds to adaptor proteins, such as TRIF (Toll-IL-1 receptor-domain-containing-adaptor-inducing interferon-beta factor), FADD (Fas-associated-protein with death domain), NEMO (NF-κB regulatory subunit IKKγ), SQSTM1 (sequestosome 1/p62), or RIPK3 (receptor-interacting protein kinase 3), which are involved in RNA sensing, NF-κB signaling, autophagosome formation, apoptosis, and necroptosis. We report that a range of rhinoviruses impair apoptosis and necroptosis in epithelial cells late in infection. Unlike the double-strand (ds) RNA mimetic poly I:C (polyinosinic:polycytidylic acid), the exposure of dsRNA to toll-like receptor 3 (TLR3) in rhinovirus-infected cells did not lead to apoptosis execution. Accordingly, necroptosis and the production of ROS (reactive oxygen species) were not observed late in infection, when RIPK3 was absent. Instead, a virus-induced alternative necrotic cell death pathway proceeded, which led to membrane rupture, indicated by propidium iodide staining. The impairment of dsRNA-induced apoptosis late in infection was controlled by the viral 3C-protease (3Cpro), which disrupted RIPK1-TRIF/FADD /SQSTM1 immune-complexes. 3Cpro and 3C precursors were found to coimmuno-precipitate with RIPK1, cleaving the RIPK1 death-domain, and generating N-terminal RIPK1 fragments. The depletion of RIPK1 or chemical inhibition of its kinase at the N-terminus did not interfere with virus progeny formation or cell fate. The data show that rhinoviruses suppress apoptosis and necroptosis, and release progeny by an alternative cell death pathway, which is controlled by viral proteases modifying innate immune complexes.


Asunto(s)
Apoptosis , Cisteína Endopeptidasas/metabolismo , Células Epiteliales/virología , Mucosa Nasal/virología , Necroptosis , Rhinovirus/enzimología , Neoplasias del Cuello Uterino/virología , Proteínas Virales/metabolismo , Proteasas Virales 3C , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Complejo Antígeno-Anticuerpo/metabolismo , Células Epiteliales/enzimología , Células Epiteliales/inmunología , Células Epiteliales/ultraestructura , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Femenino , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Mucosa Nasal/enzimología , Mucosa Nasal/inmunología , Mucosa Nasal/ultraestructura , Especies Reactivas de Oxígeno/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Rhinovirus/inmunología , Rhinovirus/patogenicidad , Proteína Sequestosoma-1/metabolismo , Transducción de Señal , Neoplasias del Cuello Uterino/enzimología , Neoplasias del Cuello Uterino/ultraestructura
3.
Cell Host Microbe ; 16(5): 677-90, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25525797

RESUMEN

Similar to other positive-strand RNA viruses, rhinovirus, the causative agent of the common cold, replicates on a web of cytoplasmic membranes, orchestrated by host proteins and lipids. The host pathways that facilitate the formation and function of the replication membranes and complexes are poorly understood. We show that rhinovirus replication depends on host factors driving phosphatidylinositol 4-phosphate (PI4P)-cholesterol counter-currents at viral replication membranes. Depending on the virus type, replication required phosphatidylinositol 4-kinase class 3beta (PI4K3b), cholesteryl-esterase hormone-sensitive lipase (HSL) or oxysterol-binding protein (OSBP)-like 1, 2, 5, 9, or 11 associated with lipid droplets, endosomes, or Golgi. Replication invariably required OSBP1, which shuttles cholesterol and PI4P between ER and Golgi at membrane contact sites. Infection also required ER-associated PI4P phosphatase Sac1 and phosphatidylinositol (PI) transfer protein beta (PITPb) shunting PI between ER-Golgi. These data support a PI4P-cholesterol counter-flux model for rhinovirus replication.


Asunto(s)
Colesterol/metabolismo , Aparato de Golgi/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Rhinovirus/enzimología , Replicación Viral , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Interacciones Huésped-Patógeno , Humanos , Receptores de Esteroides/metabolismo , Rhinovirus/fisiología , Proteínas de Transporte Vesicular/metabolismo
4.
Virol J ; 7: 264, 2010 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-20937137

RESUMEN

BACKGROUND: Picornaviruses are common human and animal pathogens, including polio and rhinoviruses of the enterovirus family, and hepatitis A or food-and-mouth disease viruses. There are no effective countermeasures against the vast majority of picornaviruses, with the exception of polio and hepatitis A vaccines. Human rhinoviruses (HRV) are the most prevalent picornaviruses comprising more than one hundred serotypes. The existing and also emerging HRVs pose severe health risks for patients with asthma or chronic obstructive pulmonary disease. Here, we developed a serotype-independent infection assay using a commercially available mouse monoclonal antibody (mabJ2) detecting double-strand RNA. RESULTS: Immunocytochemical staining for RNA replication centers using mabJ2 identified cells that were infected with either HRV1A, 2, 14, 16, 37 or coxsackievirus (CV) B3, B4 or A21. MabJ2 labeled-cells were immunocytochemically positive for newly synthesized viral capsid proteins from HRV1A, 14, 16, 37 or CVB3, 4. We optimized the procedure for detection of virus replication in settings for high content screening with automated fluorescence microscopy and single cell analysis. Our data show that the infection signal was dependent on multiplicity, time and temperature of infection, and the mabJ2-positive cell numbers correlated with viral titres determined in single step growth curves. The mabJ2 infection assay was adapted to determine the efficacy of anti-viral compounds and small interfering RNAs (siRNAs) blocking enterovirus infections. CONCLUSIONS: We report a broadly applicable, rapid protocol to measure infection of cultured cells with enteroviruses at single cell resolution. This assay can be applied to a wide range of plus-sense RNA viruses, and hence allows comparative studies of viral infection biology without dedicated reagents or procedures. This protocol also allows to directly compare results from small compound or siRNA infection screens for different serotypes without the risk of assay specific artifacts.


Asunto(s)
Enterovirus/crecimiento & desarrollo , ARN Viral/metabolismo , Rhinovirus/crecimiento & desarrollo , Replicación Viral , Anticuerpos Monoclonales , Anticuerpos Antivirales , Automatización/métodos , Células Cultivadas , Humanos , Inmunohistoquímica/métodos , Pruebas de Sensibilidad Microbiana/métodos , Microscopía Fluorescente/métodos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Coloración y Etiquetado/métodos , Cultivo de Virus/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...