Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 43(7): 1154-1165, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36596698

RESUMEN

During development, cortical neurons are produced in a temporally regulated sequence from apical progenitors, directly or indirectly, through the production of intermediate basal progenitors. The balance between these major progenitor types is critical for the production of the proper number and types of neurons, and it is thus important to decipher the cellular and molecular cues controlling this equilibrium. Here we address the role of a cell cycle regulator, the CDC25B phosphatase, in this process. We show that, in the developing mouse neocortex of both sex, deleting CDC25B in apical progenitors leads to a transient increase in the production of TBR1+ neurons at the expense of TBR2+ basal progenitors. This phenotype is associated with lengthening of the G2 phase of the cell cycle, the total cell cycle length being unaffected. Using in utero electroporation and cortical slice cultures, we demonstrate that the defect in TBR2+ basal progenitor production requires interaction with CDK1 and is because of the G2 phase lengthening in CDC25B mutants. Together, this study identifies a new role for CDC25B and G2 phase length in direct versus indirect neurogenesis at early stages of cortical development.SIGNIFICANCE STATEMENT This study is the first analysis of the function of CDC25B, a G2/M regulator, in the developing neocortex. We show that removing CDC25B function leads to a transient increase in neuronal differentiation at early stages, occurring simultaneously with a decrease in basal intermediate progenitors (bIPs). Conversely, a CDC25B gain of function promotes production of bIPs, and this is directly related to CDC25B's ability to regulate CDK1 activity. This imbalance of neuron/progenitor production is linked to a G2 phase lengthening in apical progenitors; and using pharmacological treatments on cortical slice cultures, we show that shortening the G2 phase is sufficient to enhance bIP production. Our results reveal the importance of G2 phase length regulation for neural progenitor fate determination.


Asunto(s)
Neocórtex , Células-Madre Neurales , Neurogénesis , Animales , Ratones , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/metabolismo
3.
Elife ; 72018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29969095

RESUMEN

A fundamental issue in developmental biology and in organ homeostasis is understanding the molecular mechanisms governing the balance between stem cell maintenance and differentiation into a specific lineage. Accumulating data suggest that cell cycle dynamics play a major role in the regulation of this balance. Here we show that the G2/M cell cycle regulator CDC25B phosphatase is required in mammals to finely tune neuronal production in the neural tube. We show that in chick neural progenitors, CDC25B activity favors fast nuclei departure from the apical surface in early G1, stimulates neurogenic divisions and promotes neuronal differentiation. We design a mathematical model showing that within a limited period of time, cell cycle length modifications cannot account for changes in the ratio of the mode of division. Using a CDC25B point mutation that cannot interact with CDK, we show that part of CDC25B activity is independent of its action on the cell cycle.


Asunto(s)
Ciclo Celular/genética , Modelos Estadísticos , Células-Madre Neurales/enzimología , Tubo Neural/enzimología , Neurogénesis/genética , Fosfatasas cdc25/genética , Animales , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Diferenciación Celular , Embrión de Pollo , Pollos , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Ratones , Ratones Noqueados , Células-Madre Neurales/citología , Tubo Neural/citología , Tubo Neural/crecimiento & desarrollo , Neuronas/citología , Neuronas/enzimología , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Mutación Puntual , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Médula Espinal/citología , Médula Espinal/enzimología , Médula Espinal/crecimiento & desarrollo , Imagen de Lapso de Tiempo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Fosfatasas cdc25/metabolismo
4.
Dev Biol ; 436(2): 94-107, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29486153

RESUMEN

Proper embryonic development relies on a tight control of spatial and temporal gene expression profiles in a highly regulated manner. One good example is the ON/OFF switching of the transcription factor PAX6 that governs important steps of neurogenesis. In the neural tube PAX6 expression is initiated in neural progenitors through the positive action of retinoic acid signaling and downregulated in neuronal precursors by the bHLH transcription factor NEUROG2. How these two regulatory inputs are integrated at the molecular level to properly fine tune temporal PAX6 expression is not known. In this study we identified and characterized a 940-bp long distal cis-regulatory module (CRM), located far away from the PAX6 transcription unit and which conveys positive input from RA signaling pathway and indirect repressive signal(s) from NEUROG2. These opposing regulatory signals are integrated through HOMZ, a 94 bp core region within E940 which is evolutionarily conserved in distant organisms such as the zebrafish. We show that within HOMZ, NEUROG2 and RA exert their opposite temporal activities through a short 60 bp region containing a functional RA-responsive element (RARE). We propose a model in which retinoic acid receptors (RARs) and NEUROG2 repressive target(s) compete on the same DNA motif to fine tune temporal PAX6 expression during the course of spinal neurogenesis.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Tubo Neural/metabolismo , Neurogénesis/genética , Factor de Transcripción PAX6/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Ratones , Proteínas del Tejido Nervioso/metabolismo , Tubo Neural/embriología , Receptores de Ácido Retinoico/metabolismo , Transducción de Señal/fisiología , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA