Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Opin Struct Biol ; 53: 107-114, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30121401

RESUMEN

The contemporary `RNA-protein world' is exemplified by close associations between many RNAs and proteins which are necessary to carry out important biological processes. DTD-like fold, which is involved in translational proofreading, represents such RNA-protein complexes (RNPCs). Interestingly, it interacts with the substrates in the active site mostly through the main chain, and side chains are dispensable for both substrate specificity and catalysis. It functions at the RNA-protein interface to perform RNA-based catalysis using the 2'-OH of adenosine-76 of tRNA. Such catalytic RNPCs as the DTD-like fold also indicate the probable evolutionary trajectory for the transition from RNA-mediated catalysis to protein-based catalysis.


Asunto(s)
ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Biocatálisis , Dominio Catalítico , Cricetinae , Aminoacil-ARN de Transferencia/metabolismo , Ribonucleasas/metabolismo , Ribosomas/metabolismo , Empalmosomas/metabolismo , Especificidad por Sustrato
2.
Elife ; 72018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30091703

RESUMEN

D-aminoacyl-tRNA deacylase (DTD) acts on achiral glycine, in addition to D-amino acids, attached to tRNA. We have recently shown that this activity enables DTD to clear non-cognate Gly-tRNAAla with 1000-fold higher efficiency than its activity on Gly-tRNAGly, indicating tRNA-based modulation of DTD (Pawar et al., 2017). Here, we show that tRNA's discriminator base predominantly accounts for this activity difference and is the key to selection by DTD. Accordingly, the uracil discriminator base, serving as a negative determinant, prevents Gly-tRNAGly misediting by DTD and this protection is augmented by EF-Tu. Intriguingly, eukaryotic DTD has inverted discriminator base specificity and uses only G3•U70 for tRNAGly/Ala discrimination. Moreover, DTD prevents alanine-to-glycine misincorporation in proteins rather than only recycling mischarged tRNAAla. Overall, the study reveals the unique co-evolution of DTD and discriminator base, and suggests DTD's strong selection pressure on bacterial tRNAGlys to retain a pyrimidine discriminator code.


Asunto(s)
Aminoaciltransferasas/metabolismo , Escherichia coli/metabolismo , Glicina/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia de Alanina/metabolismo , ARN de Transferencia de Glicerina/metabolismo , Animales , Escherichia coli/enzimología , Ratones
3.
Nat Commun ; 9(1): 511, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29410408

RESUMEN

D-aminoacyl-tRNA deacylase (DTD), a bacterial/eukaryotic trans-editing factor, removes D-amino acids mischarged on tRNAs and achiral glycine mischarged on tRNAAla. An invariant cross-subunit Gly-cisPro motif forms the mechanistic basis of L-amino acid rejection from the catalytic site. Here, we present the identification of a DTD variant, named ATD (Animalia-specific tRNA deacylase), that harbors a Gly-transPro motif. The cis-to-trans switch causes a "gain of function" through L-chiral selectivity in ATD resulting in the clearing of L-alanine mischarged on tRNAThr(G4•U69) by eukaryotic AlaRS. The proofreading activity of ATD is conserved across diverse classes of phylum Chordata. Animalia genomes enriched in tRNAThr(G4•U69) genes are in strict association with the presence of ATD, underlining the mandatory requirement of a dedicated factor to proofread tRNA misaminoacylation. The study highlights the emergence of ATD during genome expansion as a key event associated with the evolution of Animalia.


Asunto(s)
Alanina/química , Aminoaciltransferasas/química , Aminoacil-ARN de Transferencia/química , Treonina/química , Aminoacilación de ARN de Transferencia/genética , Alanina/genética , Alanina/metabolismo , Secuencia de Aminoácidos , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Animales , Apicomplexa/genética , Apicomplexa/metabolismo , Bacterias/genética , Bacterias/metabolismo , Sitios de Unión , Evolución Biológica , Clonación Molecular , Cristalografía por Rayos X , Expresión Génica , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Treonina/genética , Treonina/metabolismo
4.
Elife ; 62017 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-28362257

RESUMEN

Strict L-chiral rejection through Gly-cisPro motif during chiral proofreading underlies the inability of D-aminoacyl-tRNA deacylase (DTD) to discriminate between D-amino acids and achiral glycine. The consequent Gly-tRNAGly 'misediting paradox' is resolved by EF-Tu in the cell. Here, we show that DTD's active site architecture can efficiently edit mischarged Gly-tRNAAla species four orders of magnitude more efficiently than even AlaRS, the only ubiquitous cellular checkpoint known for clearing the error. Also, DTD knockout in AlaRS editing-defective background causes pronounced toxicity in Escherichia coli even at low-glycine levels which is alleviated by alanine supplementation. We further demonstrate that DTD positively selects the universally invariant tRNAAla-specific G3•U70. Moreover, DTD's activity on non-cognate Gly-tRNAAla is conserved across all bacteria and eukaryotes, suggesting DTD's key cellular role as a glycine deacylator. Our study thus reveals a hitherto unknown function of DTD in cracking the universal mechanistic dilemma encountered by AlaRS, and its physiological importance.


Asunto(s)
Alanina-ARNt Ligasa/antagonistas & inhibidores , Aminoaciltransferasas/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Glicina/metabolismo
5.
PLoS Biol ; 14(5): e1002465, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27224426

RESUMEN

D-aminoacyl-tRNA deacylase (DTD) removes D-amino acids mischarged on tRNAs and is thus implicated in enforcing homochirality in proteins. Previously, we proposed that selective capture of D-aminoacyl-tRNA by DTD's invariant, cross-subunit Gly-cisPro motif forms the mechanistic basis for its enantioselectivity. We now show, using nuclear magnetic resonance (NMR) spectroscopy-based binding studies followed by biochemical assays with both bacterial and eukaryotic systems, that DTD effectively misedits Gly-tRNAGly. High-resolution crystal structure reveals that the architecture of DTD's chiral proofreading site is completely porous to achiral glycine. Hence, L-chiral rejection is the only design principle on which DTD functions, unlike other chiral-specific enzymes such as D-amino acid oxidases, which are specific for D-enantiomers. Competition assays with elongation factor thermo unstable (EF-Tu) and DTD demonstrate that EF-Tu precludes Gly-tRNAGly misediting at normal cellular concentrations. However, even slightly higher DTD levels overcome this protection conferred by EF-Tu, thus resulting in significant depletion of Gly-tRNAGly. Our in vitro observations are substantiated by cell-based studies in Escherichia coli that show that overexpression of DTD causes cellular toxicity, which is largely rescued upon glycine supplementation. Furthermore, we provide direct evidence that DTD is an RNA-based catalyst, since it uses only the terminal 2'-OH of tRNA for catalysis without the involvement of protein side chains. The study therefore provides a unique paradigm of enzyme action for substrate selection/specificity by DTD, and thus explains the underlying cause of DTD's activity on Gly-tRNAGly. It also gives a molecular and functional basis for the necessity and the observed tight regulation of DTD levels, thereby preventing cellular toxicity due to misediting.


Asunto(s)
Aminoaciltransferasas/química , Aminoaciltransferasas/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Alanina/química , Alanina/metabolismo , Aminoaciltransferasas/genética , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Escherichia coli/citología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Glicina/química , Glicina/metabolismo , Hidrólisis , Espectroscopía de Resonancia Magnética , Factor Tu de Elongación Peptídica/genética , Plasmodium falciparum/enzimología , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia de Glicerina/química , ARN de Transferencia de Glicerina/metabolismo , Ribosomas/metabolismo , Especificidad por Sustrato , Proteínas de Pez Cebra/metabolismo
6.
Nat Commun ; 6: 7552, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26113036

RESUMEN

Proofreading modules of aminoacyl-tRNA synthetases are responsible for enforcing a high fidelity during translation of the genetic code. They use strategically positioned side chains for specifically targeting incorrect aminoacyl-tRNAs. Here, we show that a unique proofreading module possessing a D-aminoacyl-tRNA deacylase fold does not use side chains for imparting specificity or for catalysis, the two hallmark activities of enzymes. We show, using three distinct archaea, that a side-chain-stripped recognition site is fully capable of solving a subtle discrimination problem. While biochemical probing establishes that RNA plays the catalytic role, mechanistic insights from multiple high-resolution snapshots reveal that differential remodelling of the catalytic core at the RNA-peptide interface provides the determinants for correct proofreading activity. The functional crosstalk between RNA and protein elucidated here suggests how primordial enzyme functions could have emerged on RNA-peptide scaffolds before recruitment of specific side chains.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Edición de ARN/fisiología , ARN/metabolismo , Aminoacil-ARNt Sintetasas/genética , Proteínas Bacterianas/genética , Dominio Catalítico , Clonación Molecular , Regulación Enzimológica de la Expresión Génica , Modelos Moleculares , Conformación Proteica , Procesamiento Proteico-Postraduccional
7.
Elife ; 2: e01519, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24302572

RESUMEN

The biological macromolecular world is homochiral and effective enforcement and perpetuation of this homochirality is essential for cell survival. In this study, we present the mechanistic basis of a configuration-specific enzyme that selectively removes D-amino acids erroneously coupled to tRNAs. The crystal structure of dimeric D-aminoacyl-tRNA deacylase (DTD) from Plasmodium falciparum in complex with a substrate-mimicking analog shows how it uses an invariant 'cross-subunit' Gly-cisPro dipeptide to capture the chiral centre of incoming D-aminoacyl-tRNA. While no protein residues are directly involved in catalysis, the unique side chain-independent mode of substrate recognition provides a clear explanation for DTD's ability to act on multiple D-amino acids. The strict chiral specificity elegantly explains how the enriched cellular pool of L-aminoacyl-tRNAs escapes this proofreading step. The study thus provides insights into a fundamental enantioselection process and elucidates a chiral enforcement mechanism with a crucial role in preventing D-amino acid infiltration during the evolution of translational apparatus. DOI: http://dx.doi.org/10.7554/eLife.01519.001.


Asunto(s)
Código Genético , Estereoisomerismo , Adenosina/metabolismo , Dominio Catalítico , Cristalización , Dimerización , Estructura Molecular
8.
Int J Biol Macromol ; 49(4): 674-80, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21762723

RESUMEN

Ureases isolated from leguminous sources, Canavalia ensiformis and Cajanus cajan were immobilized onto gold nanoparticles (nano-ureases). Optimization of the urease immobilization was carried using response surface methodology based on Central Composite Design. Immobilization efficiency of nano-urease from C. ensiformis and C. cajan were found to be 215.10% and 255.92%, respectively. The methodology adopted has deviation of 2.56% and 3.01% with respect to experimental values in case of C. ensiformis and C. cajan, respectively. Nano-urease from C. cajan has broad physico-chemical parameters with pH optimum from 7.1 to 7.3 and temperature optimum from 50 to 70°C. Nano-urease from C. ensiformis has sharp pH and temperature optima at 7.3 and 70°C, respectively. Fourier transform infra-red spectroscopy has revealed involvement of groups viz. amino, glycosyl moiety, etc. in urease immobilization onto gold nano-particles. Transmission and scanning electron micrographs revealed that arrangement of urease onto gold nano-particles from C. ensiformis was uniform while it was localized in case of C. cajan. Nano-urease from C. ensiformis has higher specificity and catalysis toward urea as compared to nano-urease from C. cajan. Nano-ureases from both sources are equally stable for 6 months under dried conditions and can be used for 10 washes.


Asunto(s)
Cajanus/enzimología , Canavalia/enzimología , Oro/química , Nanopartículas del Metal/química , Nanotecnología/métodos , Ureasa/metabolismo , Análisis de Varianza , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Nanopartículas del Metal/ultraestructura , Reciclaje , Espectroscopía Infrarroja por Transformada de Fourier , Ureasa/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...