Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37447417

RESUMEN

The incorporation of fly ash in polybutyl succinate (PBS) and polybutyl adipate terephtalate (PBAT) in the partial replacement of ammonium polyphosphate and/or melamine polyphosphate is evaluated in the present work. Furthermore, the influence of the surface modification of fly ash with two silanes and titanate coupling agents was also studied. Cone calorimeter experiments, pyrolysis combustion flow calorimeters (PCFCs), and UL94V tests were used to assess the fire performance of the composites. Scanning electronic microscopy, X-microanalysis, and X-ray diffractometry analysis were carried out on cone calorimeter residues in order to access the fire-retardant mode of action. The formation of new components due to the presence of fly ash was highlighted by X-ray diffractometry, indicating the synergistic effects between the flame-retardant system and fly ash. The X-microanalysis results showed that the main fraction of initial phosphorous is present in the cone calorimeter residue, indicating that the proposed system acts in a condensed phase.

2.
J Hazard Mater ; 388: 121779, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31848097

RESUMEN

VOCs in paper mills have severely exceeded the emission standards and their photo-catalytic degradations should focus on the experimental and theoretical studies. This work used TiO2 colloid as catalyst to study the photo-catalytic degradations of mixed HCHO and C6H6 at five mixing ratios. The adsorption behaviors of pure forms and mixtures on the TiO2 (101) surface were simulated using density functional theory (DFT), and their catalytic reaction mechanisms were also analyzed. The following results were found: (1) With increasing initial concentration, the enhanced adsorption and easy degradation interpreted the increased degradation rate for pure HCHO, while the counteractions of enhanced adsorption and inhibited catalytic reaction kept the constant degradation rate for pure C6H6. (2) For their mixtures, the HCHO degradation was inhibited at high C6H6 concentration due to the inhibited adsorption and catalytic reaction of HCHO. The C6H6 degradation was slightly weakened at high HCHO concentration and then restored to the normal degradation rate of C6H6, which could be attributed to the weakened adsorption of C6H6 and the easy degradation of HCHO in the initial stage. The combined experimental, simulation, and theoretical results provides sufficient information to understand the photo-catalytic degradation process for mixed gaseous pollutants in different realistic environments.

3.
Bioresour Technol ; 99(6): 1699-707, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17513105

RESUMEN

A semi-industrial bioscrubber was developed to treat a complex mixture of VOCs: oxygenated, aromatic and chlorinated compounds. In order to optimize the VOCs mass transfer, an original washing agent made up of water and cutting oil was tested, and the impact of this washing agent on bioscrubbing performances was investigated. The results obtained with a laboratory unit show that the addition of oil strongly increases the quantity of transferred aromatics. For these compounds, the apparent mass transfer coefficient k(L)a is lower than with water alone. In term of bioscrubbing performances, comparison of the results obtained with the water-oil mixture and water alone showed that the removal efficiency for aromatics is enhanced: from 12% to 36% (applied load of 852 g VOCs m(-3)h(-1)); the elimination of chlorinated compounds is slightly improved. The addition of oil does not seem to lead to any dysfunction of the microbial communities that metabolize the transferred compounds.


Asunto(s)
Química Orgánica/métodos , Absorción , Adsorción , Derivados del Benceno/química , Biodegradación Ambiental , Diseño de Equipo , Residuos Industriales , Modelos Estadísticos , Aceites , Compuestos Orgánicos/química , Factores de Tiempo , Volatilización , Agua , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
4.
Water Res ; 41(13): 2987-95, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17467770

RESUMEN

The effect of the addition of nitrate to winery wastewaters to control the formation of VFA in order to prevent odours during storage and treatment was studied in batch bioreactors at different NO(3)/chemical oxygen demand (COD) ratios and at full scale in natural evaporation ponds (2 x 7000 m(2)) by measuring olfactory intensity. In the absence of nitrate, butyric acid (2304 mgL(-1)), acetic acid (1633 mgL(-1)), propionic acid (1558 mgL(-1)), caproic acid (499 mgL(-1)) and valeric acid (298 mgL(-1)) were produced from reconstituted winery wastewater. For a ratio of NO(3)/COD=0.4 gg(-1), caproic and valeric acids were not formed. The production of butyric and propionic acids was reduced by 93.3% and 72.5%, respectively, at a ratio of NO(3)/COD=0.8, and by 97.4% and 100% at a ratio of NO(3)/COD=1.2 gg(-1). Nitrate delayed and decreased butyric acid formation in relation to the oxidoreduction potential. Studies in ponds showed that the addition of concentrated calcium nitrate (NITCAL) to winery wastewaters (3526 m(3)) in a ratio of NO(3)/COD=0.8 inhibited VFA production, with COD elimination (94%) and total nitrate degradation, and no final nitrite accumulation. On the contrary, in ponds not treated with nitrate, malodorous VFA (from propionic to heptanoïc acids) represented up to 60% of the COD. Olfactory intensity measurements in relation to the butanol scale of VFA solutions and the ponds revealed the pervasive role of VFA in the odour of the untreated pond as well as the clear decrease in the intensity and not unpleasant odour of the winery wastewater pond enriched in nitrates. The results obtained at full scale underscored the feasibility and safety of the calcium nitrate treatment as opposed to concentrated nitric acid.


Asunto(s)
Ácidos Grasos Volátiles/química , Industria de Alimentos , Residuos Industriales , Eliminación de Residuos Líquidos/métodos , Vino/análisis , Biodegradación Ambiental , Reactores Biológicos , Nitratos/química , Odorantes , Factores de Tiempo , Contaminantes Químicos del Agua
5.
J Chromatogr A ; 999(1-2): 71-80, 2003 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-12885053

RESUMEN

A quantification method for malodorous sulphur compounds in gaseous industrial effluents using solid-phase microextraction sampling followed by gas chromatography-pulsed flame photometric detection has been developed. A comparative study showed that polydimethylsiloxane-Carboxen fibre led to sufficient sensitivity to achieve the microg m(-3) human perception levels of the five analytes studied (hydrogen sulphide, methanethiol, ethanethiol, dimethyl sulphide, dimethyl disulphide). However, this coating is known to suffer from competitive adsorption, which may lead to inaccurate quantification. Therefore, external calibration can only be used under a limited range of concentrations, which were determined from Fick's diffusion law. This approach was tested on a real gaseous sample and compared with the standard addition method. Good correlations were found for ethanethiol, dimethyl sulphide and dimethyl disulphide. However, for more volatile sulphur compounds (i.e., hydrogen sulphide and methanethiol), the easy-to-use external calibration could not be applied and standard additions had to be performed for accurate quantification.


Asunto(s)
Cromatografía de Gases/métodos , Gases/análisis , Residuos Industriales/análisis , Odorantes , Compuestos de Azufre/análisis , Calibración , Sensibilidad y Especificidad
6.
Chemosphere ; 50(1): 145-53, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12656240

RESUMEN

The physico-chemical characteristics of granulated sludge lead us to develop its use as a packing material in air biofiltration. Then, the aim of this study is to investigate the potential of unit systems packed with this support in terms of ammonia and hydrogen sulfide emissions treatment. Two laboratory scale pilot biofilters were used. A volumetric load of 680 g H2S m(-3) empty bed day(-1) and 85 g NH3 m(-3) empty bed day(-1) was applied for eight weeks to a unit called BGSn (column packed with granulated sludge and mainly supplied with hydrogen sulfide); a volumetric load of 170 g H2S m(-3) empty bed day(-1) and 340 g NH3 m(-3) empty bed day(-1) was applied for eight weeks to the other called BGNs (column packed with granulated sludge and mainly supplied with ammonia). Ammonia and hydrogen sulfide elimination occur in the biofilters simultaneously. The hydrogen sulphide and ammonia removal efficiencies reached are very high: 100% and 80% for BGSn; 100% and 80% for BGNs respectively. Hydrogen sulfide is oxidized into sulphate and sulfur. The ammonia oxidation products are nitrite and nitrate. The nitrogen error mass balance is high for BGSn (60%) and BGNs (36%). This result could be explained by the denitrification process which would have occurred in anaerobic zones. High percentages of ammonia or hydrogen sulfide are oxidized on the first half of the column. The oxidation of high amounts of hydrogen sulfide would involve some environmental stress on nitrifying bacterial growth and activity.


Asunto(s)
Contaminantes Atmosféricos/química , Amoníaco/química , Sulfuro de Hidrógeno/química , Eliminación de Residuos/métodos , Aguas del Alcantarillado/microbiología , Biodegradación Ambiental , Biomasa , Filtración , Nitrobacter/crecimiento & desarrollo , Nitrosomonas/crecimiento & desarrollo , Proyectos Piloto , Eliminación de Residuos/instrumentación , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...