RESUMEN
The ability of conventional type-1 dendritic cells (cDC1) to cross-present tumor antigens to CD8+ T cells is critical for the induction of antitumor CTLs. Mice that are constitutively deficient in cDC1 cells have been reported to fail to respond to immunotherapy strategies based on checkpoint inhibitors. However, further work is needed to clarify the precise time during immunotherapy treatment that cDC1 cells are required for the beneficial effect of treatment. Here, we used a refined XCR1-DTR-Venus transgenic mouse model to acutely deplete cDC1 cells and trace their behavior using intravital microscopy. Diphtheria toxin-mediated cDC1 depletion prior to immunotherapy treatment with anti-PD-1 and/or anti-CD137 immunostimulatory mAbs completely ablated antitumor efficacy. The efficacy of adoptive T-cell therapy was also hampered by prior cDC1 depletion. After the onset of immunotherapy treatment, depletion of cDC1s only moderately reduced the therapeutic efficacy of anti-PD-1 and anti-CD137 mAbs. Intravital microscopy of liver-engrafted tumors revealed changes in the intratumoral behavior of cDC1 cells in mice receiving immunotherapy, and treatment with diphtheria toxin to deplete cDC1s impaired tumor T-cell infiltration and function. These results reveal that the functional integrity of the cDC1 compartment is required at the onset of various immunotherapies to successfully treat established tumors. SIGNIFICANCE: These findings reveal the intratumoral behavior of cDC1 dendritic cells in transgenic mouse models and demonstrate that the efficacy of immunotherapy regimens is precluded by elimination of these cells.
Asunto(s)
Toxina Diftérica , Neoplasias Hepáticas , Ratones , Animales , Células Dendríticas , Inmunoterapia/métodos , Linfocitos T CD8-positivos , Anticuerpos Monoclonales , Ratones Transgénicos , Neoplasias Hepáticas/tratamiento farmacológicoRESUMEN
Rationale: The CEA-CD3 T cell bispecific antibody cibisatamab (CEA-TCB) is currently undergoing clinical trials. Here we study its performance against three-dimensional tumor organoids in cocultures with T cells as compared to a higher affinity CEACAM5-CD3 (CEACAM5-TCB) bispecific antibody using time-lapse confocal microscopy. Methods: Pre-labelled spheroids derived from colon cancer cell lines and primary organoids derived from four colorectal cancer surgical specimens, which expressed different graded levels of CEA, were exposed in cocultures to T lymphocytes. Cocultures were treated with CEA-CD3 T-cell engagers and were followed by live confocal microscopy. Caspase 3 activation detected in real-time was used as an indicator of tumor cell death. Co-cultures were also set up with autologous tumor-associated fibroblasts to test the co-stimulatory effect of a fibroblast activated protein (FAP)- targeted 4-1BBL bispecific antibody fusion protein currently undergoing clinical trials. Results: Tumor-cell killing of 3D colon carcinoma cultures was dependent on the levels of surface CEA expression, in such a way that the lower affinity agent (CEA-TCB) did not mediate killing by human preactivated T cells below a certain CEA expression threshold, while the high affinity construct (CEACAM5-TCB) remained active on the low CEA expressing organoids. Modelling heterogeneity in the levels of CEA expression by coculturing CEA high and low organoids showed measurable but weak bystander killing. Cocultures of tumor organoids, autologous fibroblasts and T cells allowed to observe a costimulatory effect of anti-FAP-4-1BBL both to release IFNγ and to attain more efficacious tumor cell killing. Conclusion: Three-dimensional tumor cocultures with T cells using live confocal microscopy provide suitable models to test the requirements for colon-cancer redirected killing as elicited by CEA-targeted T-cell engagers undergoing clinical trials and treatment allow combinations to be tested in a relevant preclinical system.
Asunto(s)
Anticuerpos Biespecíficos , Antígeno Carcinoembrionario , Neoplasias del Colon , Linfocitos T , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología , Complejo CD3/inmunología , Antígeno Carcinoembrionario/inmunología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/inmunología , Neoplasias del Colon/metabolismo , Humanos , Activación de Linfocitos , Organoides/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunologíaRESUMEN
The study of lymphatic tumor vasculature has been gaining interest in the context of cancer immunotherapy. These vessels constitute conduits for immune cells' transit toward the lymph nodes, and they endow tumors with routes to metastasize to the lymph nodes and, from them, toward distant sites. In addition, this vasculature participates in the modulation of the immune response directly through the interaction with tumor-infiltrating leukocytes and indirectly through the secretion of cytokines and chemokines that attract leukocytes and tumor cells. Radiotherapy constitutes the therapeutic option for more than 50% of solid tumors. Besides impacting transformed cells, RT affects stromal cells such as endothelial and immune cells. Mature lymphatic endothelial cells are resistant to RT, but we do not know to what extent RT may affect tumor-aberrant lymphatics. RT compromises lymphatic integrity and functionality, and it is a risk factor to the onset of lymphedema, a condition characterized by deficient lymphatic drainage and compromised tissue homeostasis. This review aims to provide evidence of RT's effects on tumor vessels, particularly on lymphatic endothelial cell physiology and immune properties. We will also explore the therapeutic options available so far to modulate signaling through lymphatic endothelial cell receptors and their repercussions on tumor immune cells in the context of cancer. There is a need for careful consideration of the RT dosage to come to terms with the participation of the lymphatic vasculature in anti-tumor response. Here, we provide new approaches to enhance the contribution of the lymphatic endothelium to radioimmuno-oncology.
RESUMEN
Collapsin response mediator protein 2 (CRMP2) is an adaptor protein that adds tubulin dimers to the growing tip of a microtubule. First described in neurons, it is now considered a ubiquitous protein that intervenes in processes such as cytoskeletal remodeling, synaptic connection and trafficking of voltage channels. Mounting evidence supports that CRMP2 plays an essential role in neuropathology and, more recently, in cancer. We have previously described a positive correlation between nuclear phosphorylation of CRMP2 and poor prognosis in lung adenocarcinoma patients. In this work, we studied whether this cytoskeleton molding protein is involved in cancer cell migration. To this aim, we evaluated CRMP2 phosphorylation and localization in the extending lamella of lung adenocarcinoma migrating cells using in vitro assays and in vivo confocal microscopy. We demonstrated that constitutive phosphorylation of CRMP2 impaired lamella formation, cell adhesion and oriented migration. In search of a mechanistic explanation of this phenomenon, we discovered that CRMP2 Ser522 phospho-mimetic mutants display unstable tubulin polymers, unable to bind EB1 plus-Tip protein and the cortical actin adaptor IQGAP1. In addition, integrin recycling is defective and invasive structures are less evident in these mutants. Significantly, mouse xenograft tumors of NSCLC expressing CRMP2 phosphorylation mimetic mutants grew significantly less than wild-type tumors. Given the recent development of small molecule inhibitors of CRMP2 phosphorylation to treat neurodegenerative diseases, our results open the door for their use in cancer treatment.
Asunto(s)
Adenocarcinoma del Pulmón/genética , Movimiento Celular/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas del Tejido Nervioso/genética , Proteínas Activadoras de ras GTPasa/genética , Adenocarcinoma del Pulmón/patología , Animales , Proliferación Celular/genética , Citoesqueleto/genética , Regulación Neoplásica de la Expresión Génica/genética , Xenoinjertos , Humanos , Ratones , Microtúbulos/genética , Fosforilación/genética , Tubulina (Proteína)/genéticaRESUMEN
In humans, IL-8 (CXCL8) is a key chemokine for chemotaxis of polymorphonuclear leukocytes and monocytes/macrophages when acting on CXCR1 and CXCR2. CXCL8 activity on neutrophils includes chemotaxis and eliciting the extrusion of neutrophil extracellular traps (NETs). In this study, we show that concentrations of IL-8 that induce NETosis surpass in at least one order of magnitude those required to elicit chemoattraction in human neutrophils. IL-8-induced NETosis was less dependent on G-proteins than migration, while extracellular Ca+2 chelation similarly inhibited both processes. Reactive oxygen species (ROS) were more important for NETosis than for chemotaxis as evidenced by neutralization with N-acetyl -cysteine. Interestingly, selective blockade with anti-CXCR1 mAb inhibited NETosis much more readily than chemotaxis, while pharmacological inhibition of both CXCR1 and CXCR2, or selective inhibition for CXCR2 alone, similarly inhibited both functions. Together, these results propose a model according to which low concentrations of IL-8 in a gradient attract neutrophils to the inflammatory foci, while high receptor-saturating concentrations of IL-8 give rise to NETosis once leukocytes reach the core of the inflammatory insult.
Asunto(s)
Quimiotaxis/inmunología , Trampas Extracelulares/inmunología , Interleucina-8/inmunología , Neutrófilos/inmunología , Acetilcisteína/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Receptores de Interleucina-8A/antagonistas & inhibidores , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/antagonistas & inhibidores , Receptores de Interleucina-8B/metabolismo , Transducción de Señal/inmunologíaRESUMEN
Neutrophils are expanded and abundant in cancer-bearing hosts. Under the influence of CXCR1 and CXCR2 chemokine receptor agonists and other chemotactic factors produced by tumors, neutrophils, and granulocytic myeloid-derived suppressor cells (MDSCs) from cancer patients extrude their neutrophil extracellular traps (NETs). In our hands, CXCR1 and CXCR2 agonists proved to be the major mediators of cancer-promoted NETosis. NETs wrap and coat tumor cells and shield them from cytotoxicity, as mediated by CD8+ T cells and natural killer (NK) cells, by obstructing contact between immune cells and the surrounding target cells. Tumor cells protected from cytotoxicity by NETs underlie successful cancer metastases in mice and the immunotherapeutic synergy of protein arginine deiminase 4 (PAD4) inhibitors, which curtail NETosis with immune checkpoint inhibitors. Intravital microscopy provides evidence of neutrophil NETs interfering cytolytic cytotoxic T lymphocytes (CTLs) and NK cell contacts with tumor cells.
Asunto(s)
Trampas Extracelulares/metabolismo , Neoplasias Experimentales/terapia , Receptores de Quimiocina/agonistas , Receptores de Interleucina-8A/agonistas , Receptores de Interleucina-8B/agonistas , Animales , Línea Celular Tumoral , Citotoxicidad Inmunológica/inmunología , Células HT29 , Humanos , Microscopía Intravital/métodos , Células Asesinas Naturales/inmunología , Ligandos , Ratones , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/metabolismo , Receptores de Quimiocina/inmunología , Receptores de Quimiocina/metabolismo , Receptores de Interleucina-8A/inmunología , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/inmunología , Receptores de Interleucina-8B/metabolismo , Linfocitos T Citotóxicos/inmunologíaRESUMEN
The quantity of T-lymphocytes reaching the draining lymph nodes from tumors is likely important to mount effective distant responses and for the establishment of long term systemic memory. Looking into mechanisms behind lymphocyte egress, we directed our attention to leukocyte adhesion mechanisms inside tumors. Here we demonstrate that activated T-cells form intra-tumor aggregates in a LFA-1-ICAM-1-dependent fashion in mouse models of melanoma and breast cancer. We also provide evidence of the presence of T-cell clusters in primary human melanoma. Disruption of LFA-1-ICAM-1 interactions, and thereby T-cell clustering, enhances the arrival of activated CD8+ T-cells to tumor draining lymph nodes in both transplanted and spontaneous cancer models. Interestingly, upon ICAM-1 blockade, the expression of the chemotactic receptor CCR7 augments in tumor infiltrating lymphocytes and in in-vitro de-clustered T cells, as well as their ability to transmigrate across lymphatic endothelial cells. We propose that ICAM-1-mediated homotypic T-lymphocyte aggregation may serve as a tumor-mediated immune retention mechanism entrapping activated CD8+ T cells in the tumor microenvironment. Modulation of T-cell adhesion may be of use to improve the transit of activated lymphocytes toward the lymph nodes and their subsequent recirculation.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Molécula 1 de Adhesión Intercelular/inmunología , Ganglios Linfáticos/inmunología , Antígeno-1 Asociado a Función de Linfocito/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma Experimental/inmunología , Proteínas de Neoplasias/inmunología , Animales , Linfocitos T CD8-positivos/patología , Femenino , Molécula 1 de Adhesión Intercelular/genética , Ganglios Linfáticos/patología , Antígeno-1 Asociado a Función de Linfocito/genética , Linfocitos Infiltrantes de Tumor/patología , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Ratones Transgénicos , Proteínas de Neoplasias/genéticaRESUMEN
T and NK lymphocytes express CD137 (4-1BB), a costimulatory receptor of the TNFR family whose function is exploitable for cancer immunotherapy. Mitochondria regulate the function and survival of T lymphocytes. Herein, we show that CD137 costimulation provided by agonist mAb and CD137L (4-1BBL) induced mitochondria enlargement that resulted in enhanced mitochondrial mass and transmembrane potential in human and mouse CD8+ T cells. Such mitochondrial changes increased T-cell respiratory capacities and were critically dependent on mitochondrial fusion protein OPA-1 expression. Mass and function of mitochondria in tumor-reactive CD8+ T cells from cancer-bearing mice were invigorated by agonist mAb to CD137, whereas mitochondrial baseline mass and function were depressed in CD137-deficient tumor reactive T cells. Tumor rejection induced by the synergistic combination of adoptive T-cell therapy and agonistic anti-CD137 was critically dependent on OPA-1 expression in transferred CD8+ T cells. Moreover, stimulation of CD137 with CD137 mAb in short-term cultures of human tumor-infiltrating lymphocytes led to mitochondria enlargement and increased transmembrane potential. Collectively, these data point to a critical link between mitochondrial morphology and function and enhanced antitumor effector activity upon CD137 costimulation of T cells. Cancer Immunol Res; 6(7); 798-811. ©2018 AACR.
Asunto(s)
Ligando 4-1BB/metabolismo , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Linfocitos T/metabolismo , Ligando 4-1BB/genética , Animales , Biomarcadores , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Citocinas/metabolismo , Citotoxicidad Inmunológica , Femenino , Silenciador del Gen , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Melanoma Experimental , Potencial de la Membrana Mitocondrial , Ratones , Ratones Noqueados , Mitocondrias/genética , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , ARN Interferente Pequeño/genética , Linfocitos T/inmunología , Microambiente Tumoral/inmunologíaRESUMEN
BACKGROUND: It is now obvious that the majority of cellular transcripts do not code for proteins, and a significant subset of them are long non-coding RNAs (lncRNAs). Many lncRNAs show aberrant expression in cancer, and some of them have been linked to cell transformation. However, the underlying mechanisms remain poorly understood and it is unknown how the sequences of lncRNA dictate their function. RESULTS: Here we characterize the function of the p53-regulated human lncRNA LINC-PINT in cancer. We find that LINC-PINT is downregulated in multiple types of cancer and acts as a tumor suppressor lncRNA by reducing the invasive phenotype of cancer cells. A cross-species analysis identifies a highly conserved sequence element in LINC-PINT that is essential for its function. This sequence mediates a specific interaction with PRC2, necessary for the LINC-PINT-dependent repression of a pro-invasion signature of genes regulated by the transcription factor EGR1. CONCLUSIONS: Our findings support a conserved functional co-dependence between LINC-PINT and PRC2 and lead us to propose a new mechanism where the lncRNA regulates the availability of free PRC2 at the proximity of co-regulated genomic loci.
Asunto(s)
Invasividad Neoplásica , ARN Largo no Codificante/química , ARN Largo no Codificante/fisiología , Animales , Secuencia de Bases , Movimiento Celular , Secuencia Conservada , Regulación hacia Abajo , Silenciador del Gen , Humanos , Ratones , Neoplasias/genética , Neoplasias/metabolismo , Complejo Represivo Polycomb 2/metabolismoRESUMEN
Cancer related deaths are primarily due to tumor metastasis. To facilitate their dissemination to distant sites, cancer cells develop invadopodia, actin-rich protrusions capable of degrading the surrounding extracellular matrix (ECM). We aimed to determine whether ß3 integrin participates in invadopodia formed by lung carcinoma cells, based on our previous findings of specific TGF-ß induction of ß3 integrin dependent metastasis in animal models of lung carcinoma. In this study, we demonstrate that lung carcinoma cells form invadopodia in response to TGF-ß exposure. Invadopodia formation and degradation activity is dependent on ß3 integrin expression since ß3 integrin deficient cells are not able to degrade gelatin-coated surfaces. Even more, transient over-expression of SRC did not restore invadopodia formation in ß3 integrin deficient cells. Finally, we observed that blockade of PLC-dependent signaling leads to more intense labeling for ß3 integrin in invadopodia. Our results suggest that ß3 integrin function, and location, in lung cancer cells are essential for invadopodia formation, and this integrin regulates the activation of different signal pathways necessary for the invasive structure. ß3 integrin has been associated with poor prognosis and increased metastasis in several carcinoma types, including lung cancer. Our findings provide new evidence to support the use of targeted therapies against this integrin to combat the onset of metastases.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Matriz Extracelular/metabolismo , Integrina beta3/metabolismo , Neoplasias Pulmonares/metabolismo , Podosomas/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Células A549 , Adhesión Celular , Línea Celular Tumoral , Humanos , Metástasis de la Neoplasia , Podosomas/efectos de los fármacos , Transducción de Señal , Familia-src Quinasas/metabolismoRESUMEN
Microfluidic devices are becoming mainstream tools to recapitulate in vitro the behavior of cells and tissues. In this study, we use microfluidic devices filled with hydrogels of mixed collagen-Matrigel composition to study the migration of lung cancer cells under different cancer invasion microenvironments. We present the design of the microfluidic device, characterize the hydrogels morphologically and mechanically and use quantitative image analysis to measure the migration of H1299 lung adenocarcinoma cancer cells in different experimental conditions. Our results show the plasticity of lung cancer cell migration, which turns from mesenchymal in collagen only matrices, to lobopodial in collagen-Matrigel matrices that approximate the interface between a disrupted basement membrane and the underlying connective tissue. Our quantification of migration speed confirms a biphasic role of Matrigel. At low concentration, Matrigel facilitates migration, most probably by providing a supportive and growth factor retaining environment. At high concentration, Matrigel slows down migration, possibly due excessive attachment. Finally, we show that antibody-based integrin blockade promotes a change in migration phenotype from mesenchymal or lobopodial to amoeboid and analyze the effect of this change in migration dynamics, in regards to the structure of the matrix. In summary, we describe and characterize a robust microfluidic platform and a set of software tools that can be used to study lung cancer cell migration under different microenvironments and experimental conditions. This platform could be used in future studies, thus benefitting from the advantages introduced by microfluidic devices: precise control of the environment, excellent optical properties, parallelization for high throughput studies and efficient use of therapeutic drugs.
Asunto(s)
Movimiento Celular , Colágeno , Laminina , Microfluídica , Proteoglicanos , Andamios del Tejido , Línea Celular Tumoral , Colágeno/química , Colágeno/ultraestructura , Difusión , Combinación de Medicamentos , Matriz Extracelular , Humanos , Hidrogeles , Laminina/química , Laminina/ultraestructura , Fenómenos Mecánicos , Microfluídica/métodos , Microscopía Confocal , Metástasis de la Neoplasia , Fenotipo , Proteoglicanos/química , Proteoglicanos/ultraestructura , Esferoides Celulares , Andamios del Tejido/química , Células Tumorales Cultivadas , Microambiente TumoralRESUMEN
PURPOSE/OBJECTIVES: The goal of this study was to assess the effects of ionizing radiation on the expression of the integrin ligands ICAM-1 and VCAM that control leucocyte transit by lymphatic endothelial cells. MATERIALS/METHODS: Confluent monolayers of primary human lymphatic endothelial cells (LEC) were irradiated with single dose of 2, 5, 10 or 20 Gy, with 6 MeV-x-rays using a Linear-Accelerator. ICAM-1 and VCAM expression was determined by flow cytometry. Human tissue specimens received a single dose of 20 Gy with 15 MeV-x-rays. MC38, B16-OVA or B16-VEGF-C tumors grown in C57BL/6 mice were irradiated with single dose of 20Gy using a Linear-Accelerator fitted with a 10mm Radiosurgery collimator. Clinical samples were obtained from patients previous and 4 weeks after complete standard radiotherapy. ICAM-1 and VCAM expression was detected in all tissue specimens by confocal microscopy. To understand the role of TGFß in this process anti-TGFß blocking mAb were injected i.p. 30min before radiotherapy. Cell adhesion to irradiated LEC was analyzed in adhesion experiments performed in the presence or in the absence of anti- TGFß and /or anti-ICAM1 blocking mAb. RESULTS: We demonstrate that lymphatic endothelial cells in tumor samples experience induction of surface ICAM-1 and VCAM when exposed to ionizing radiation in a dose- and time-dependent manner. These effects can be recapitulated in cultured LEC, and are in part mediated by TGFß. These data are consistent with increases in ICAM-1 and VCAM expression on LYVE-1+ endothelial cells in freshly explanted human tumor tissue and in mouse transplanted tumors after radiotherapy. Finally, ICAM-1 and VCAM expression accounts for enhanced adherence of human T lymphocytes to irradiated LEC. CONCLUSION: Our results show induction of ICAM-1 and VCAM on LVs in irradiated lesions and offer a starting point for elucidating the biological and therapeutic implications of targeting leukocyte traffic in combination to immunotherapy.
Asunto(s)
Endotelio Linfático/efectos de la radiación , Molécula 1 de Adhesión Intercelular/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Relación Dosis-Respuesta en la Radiación , Endotelio Linfático/efectos de los fármacos , Endotelio Linfático/metabolismo , Citometría de Flujo , Fluoroinmunoensayo , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias/metabolismo , Neoplasias/radioterapia , Aceleradores de Partículas/instrumentación , Dosis de Radiación , Distribución Aleatoria , Linfocitos T/fisiología , Factores de Tiempo , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacologíaRESUMEN
T cells are the most abundant cell type found in afferent lymph, but their migration through lymphatic vessels (LVs) remains poorly understood. Performing intravital microscopy in the murine skin, we imaged T cell migration through afferent LVs in vivo. T cells entered into and actively migrated within lymphatic capillaries but were passively transported in contractile collecting vessels. Intralymphatic T cell number and motility were increased during contact-hypersensitivity-induced inflammation and dependent on ICAM-1/LFA-1 interactions. In vitro, blockade of endothelial cell-expressed ICAM-1 reduced T cell adhesion, crawling, and transmigration across lymphatic endothelium and decreased T cell advancement from capillaries into lymphatic collectors in skin explants. In vivo, T cell migration to draining lymph nodes was significantly reduced upon ICAM-1 or LFA-1 blockade. Our findings indicate that T cell migration through LVs occurs in distinct steps and reveal a key role for ICAM-1/LFA-1 interactions in this process.
Asunto(s)
Inflamación/inmunología , Molécula 1 de Adhesión Intercelular/metabolismo , Ganglios Linfáticos/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Piel/metabolismo , Linfocitos T/fisiología , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/fisiología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/fisiología , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Citometría de Flujo , Inflamación/inducido químicamente , Inflamación/patología , Molécula 1 de Adhesión Intercelular/química , Interferón gamma/farmacología , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/fisiología , Vasos Linfáticos/metabolismo , Antígeno-1 Asociado a Función de Linfocito/química , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Oxazolona/toxicidad , Piel/patología , Linfocitos T/citología , Linfocitos T/inmunología , Imagen de Lapso de Tiempo , Factor de Necrosis Tumoral alfa/farmacologíaRESUMEN
Increasing interest has been devoted in recent years to the understanding of alternative splicing in cancer. In this study, we performed a genome-wide analysis to identify cancer-associated splice variants in non-small cell lung cancer. We discovered and validated novel differences in the splicing of genes known to be relevant to lung cancer biology, such as NFIB, ENAH or SPAG9. Gene enrichment analyses revealed an important contribution of alternative splicing to cancer-related molecular functions, especially those involved in cytoskeletal dynamics. Interestingly, a substantial fraction of the altered genes found in our analysis were targets of the protein quaking (QKI), pointing to this factor as one of the most relevant regulators of alternative splicing in non-small cell lung cancer. We also found that ESYT2, one of the QKI targets, is involved in cytoskeletal organization. ESYT2-short variant inhibition in lung cancer cells resulted in a cortical distribution of actin whereas inhibition of the long variant caused an increase of endocytosis, suggesting that the cancer-associated splicing pattern of ESYT2 has a profound impact in the biology of cancer cells. Finally, we show that low nuclear QKI expression in non-small cell lung cancer is an independent prognostic factor for disease-free survival (HR = 2.47; 95% CI = 1.11-5.46, P = 0.026). In conclusion, we identified several splicing variants with functional relevance in lung cancer largely regulated by the splicing factor QKI, a tumor suppressor associated with prognosis in lung cancer.
Asunto(s)
Empalme Alternativo/genética , Neoplasias Pulmonares/genética , Proteínas de Unión al ARN/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Clatrina/metabolismo , Citoesqueleto/metabolismo , Regulación hacia Abajo , Exones/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico , Sinaptotagminas/metabolismoRESUMEN
Preclinical and clinical evidence indicate that the proimmune effects of radiotherapy can be synergistically augmented with immunostimulatory mAbs to act both on irradiated tumor lesions and on distant, nonirradiated tumor sites. The combination of radiotherapy with immunostimulatory anti-PD1 and anti-CD137 mAbs was conducive to favorable effects on distant nonirradiated tumor lesions as observed in transplanted MC38 (colorectal cancer), B16OVA (melanoma), and 4T1 (breast cancer) models. The therapeutic activity was crucially performed by CD8 T cells, as found in selective depletion experiments. Moreover, the integrities of BATF-3-dependent dendritic cells specialized in crosspresentation/crosspriming of antigens to CD8+ T cells and of the type I IFN system were absolute requirements for the antitumor effects to occur. The irradiation regimen induced immune infiltrate changes in the irradiated and nonirradiated lesions featured by reductions in the total content of effector T cells, Tregs, and myeloid-derived suppressor cells, while effector T cells expressed more intracellular IFNγ in both the irradiated and contralateral tumors. Importantly, 48 hours after irradiation, CD8+ TILs showed brighter expression of CD137 and PD1, thereby displaying more target molecules for the corresponding mAbs. Likewise, PD1 and CD137 were induced on tumor-infiltrating lymphocytes from surgically excised human carcinomas that were irradiated ex vivo These mechanisms involving crosspriming and CD8 T cells advocate clinical development of immunotherapy combinations with anti-PD1 plus anti-CD137 mAbs that can be synergistically accompanied by radiotherapy strategies, even if the disease is left outside the field of irradiation. Cancer Res; 76(20); 5994-6005. ©2016 AACR.
Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Linfocitos T CD8-positivos/inmunología , Neoplasias Experimentales/radioterapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/antagonistas & inhibidores , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Línea Celular Tumoral , Femenino , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias Experimentales/inmunología , Receptor de Muerte Celular Programada 1/análisis , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Interferón alfa y beta/fisiología , Proteínas Represoras/fisiología , Microambiente Tumoral , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/análisis , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunologíaRESUMEN
CD137 (4-1BB) is a surface protein initially discovered to mark activated T lymphocytes. However, its broader expression pattern also encompasses activated NK cells, B cells and myeloid cells, including mature dendritic cells. In this study, we have immunostained for CD137 on paraffin-embedded lymphoid tissues including tonsils, lymph nodes, ectopic tertiary lymphoid tissue in Hashimoto thyroiditis and cancer. Surprisingly, immunostaining mainly decorated intrafollicular lymphocytes in the tissues analyzed, with only scattered staining in interfollicular areas. Moreover, pathologic lymphoid follicles in follicular lymphoma and tertiary lymphoid tissue associated with non-small cell lung cancer showed a similar pattern of immunostaining. Multispectral fluorescence cytometry demonstrated that CD137 expression was restricted to CD4+ CXCR5+ follicular T helper lymphocytes (TFH cells) in tonsils and lymph nodes. Short-term culture of lymph node cell suspensions in the presence of either an agonistic anti-CD137 monoclonal antibody (mAb) or CD137-ligand stimulated the functional upregulation of TFH cells in 3 out of 6 cases, as indicated by CD40L surface expression and cytokine production. As a consequence, immunostimulatory monoclonal antibodies targeting CD137 (such as urelumab and PF-05082566) should be expected to primarily act on this lymphocyte subset, thus modifying ongoing humoral immune responses in patients with autoimmune disease and cancer.
RESUMEN
The geometry of 3D collagen networks is a key factor that influences the behavior of live cells within extra-cellular matrices. This paper presents a method for automatic quantification of the 3D collagen network geometry with fiber resolution in confocal reflection microscopy images. The proposed method is based on a smoothing filter and binarization of the collagen network followed by a fiber reconstruction algorithm. The method is validated on 3D collagen gels with various collagen and Matrigel concentrations. The results reveal that Matrigel affects the collagen network geometry by decreasing the network pore size while preserving the fiber length and fiber persistence length. The influence of network composition and geometry, especially pore size, is preliminarily analyzed by quantifying the migration patterns of lung cancer cells within microfluidic devices filled with three different hydrogel types. The experiments reveal that Matrigel, while decreasing pore size, stimulates cell migration. Further studies on this relationship could be instrumental for the study of cancer metastasis and other biological processes involving cell migration.
Asunto(s)
Neoplasias , Movimiento Celular , Colágeno , Matriz Extracelular , Humanos , Microscopía ConfocalRESUMEN
BACKGROUND: Transforming Growth Factor beta (TGF-ß) acts as a tumor suppressor early in carcinogenesis but turns into tumor promoter in later disease stages. In fact, TGF-ß is a known inducer of integrin expression by tumor cells which contributes to cancer metastatic spread and TGF-ß inhibition has been shown to attenuate metastasis in mouse models. However, carcinoma cells often become refractory to TGF-ß-mediated growth inhibition. Therefore identifying patients that may benefit from anti-TGF-ß therapy requires careful selection. METHODS: We performed in vitro analysis of the effects of exposure to TGF-ß in NSCLC cell chemotaxis and adhesion to lymphatic endothelial cells. We also studied in an orthotopic model of NSCLC the incidence of metastases to the lymph nodes after inhibition of TGF-ß signaling, ß3 integrin expression or both. RESULTS: We offer evidences of increased ß3-integrin dependent NSCLC adhesion to lymphatic endothelium after TGF-ß exposure. In vivo experiments show that targeting of TGF-ß and ß3 integrin significantly reduces the incidence of lymph node metastasis. Even more, blockade of ß3 integrin expression in tumors that did not respond to TGF-ß inhibition severely impaired the ability of the tumor to metastasize towards the lymph nodes. CONCLUSION: These findings suggest that lung cancer tumors refractory to TGF-ß monotherapy can be effectively treated using dual therapy that combines the inhibition of tumor cell adhesion to lymphatic vessels with stromal TGF-ß inhibition.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Regulación Neoplásica de la Expresión Génica , Integrina beta3/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Factor de Crecimiento Transformador beta1/genética , Animales , Anticuerpos Monoclonales/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quimiotaxis/efectos de los fármacos , Técnicas de Cocultivo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Integrina beta3/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Metástasis Linfática , Ratones , Terapia Molecular Dirigida , Molécula L1 de Adhesión de Célula Nerviosa/antagonistas & inhibidores , Molécula L1 de Adhesión de Célula Nerviosa/genética , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Cancer immunotherapy has great promise, but is limited by diverse mechanisms used by tumors to prevent sustained antitumor immune responses. Tumors disrupt antigen presentation, T/NK-cell activation, and T/NK-cell homing through soluble and cell-surface mediators, the vasculature, and immunosuppressive cells such as myeloid-derived suppressor cells and regulatory T cells. However, many molecular mechanisms preventing the efficacy of antitumor immunity have been identified and can be disrupted by combination immunotherapy. Here, we examine immunosuppressive mechanisms exploited by tumors and provide insights into the therapies under development to overcome them, focusing on lymphocyte traffic.
Asunto(s)
Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Neoplasias/terapia , Linfocitos T/inmunología , Humanos , Activación de Linfocitos , Neoplasias/inmunología , Microambiente TumoralRESUMEN
Tissue drains fluid and macromolecules through lymphatic vessels (LVs), which are lined by a specialized endothelium that expresses peculiar differentiation proteins, not found in blood vessels (i.e., LYVE-1, Podoplanin, PROX-1, and VEGFR-3). Lymphatic capillaries are characteristically devoid of a continuous basal membrane and are anchored to the ECM by elastic fibers that act as pulling ropes which open the vessel to avoid edema if tissue volume increases, as it occurs upon inflammation. LVs are also crucial for the transit of T lymphocytes and antigen presenting cells from tissue to draining lymph nodes (LN). Importantly, cell traffic control across lymphatic endothelium is differently regulated under resting and inflammatory conditions. Under steady-state non-inflammatory conditions, leukocytes enter into the lymphatic capillaries through basal membrane gaps (portals). This entrance is integrin-independent and seems to be mainly guided by CCL21 chemokine gradients acting on leukocytes expressing CCR7. In contrast, inflammatory processes in lymphatic capillaries involve a plethora of cytokines, chemokines, leukocyte integrins, and other adhesion molecules. Importantly, under inflammation a role for integrins and their ligands becomes apparent and, as a consequence, the number of leukocytes entering the lymphatic capillaries multiplies several-fold. Enhancing transmigration of dendritic cells en route to LN is conceivably useful for vaccination and cancer immunotherapy, whereas interference with such key mechanisms may ameliorate autoimmunity or excessive inflammation. Recent findings illustrate how, transient cell-to-cell interactions between lymphatic endothelial cells and leukocytes contribute to shape the subsequent behavior of leukocytes and condition the LV for subsequent trans-migratory events.